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Abstract

This paper considers quantile regression models using an asymmetric Laplace distribution from a Bayesian

point of view. We develop a simple and efficient Gibbs sampling algorithm for fitting the quantile regres-

sion model based on a location-scale mixture representation of the asymmetric Laplace distribution. It is

shown that the resulting Gibbs sampler can be accomplished by sampling from either normal or general-

ized inverse Gaussian distribution. We also discuss some possible extensions of our approach, including

the incorporation of a scale parameter, the use of double exponential prior, and a Bayesian analysis of

Tobit quantile regression. The proposed methods are illustrated by both simulated and real data.

Key words: Asymmetric Laplace distribution, Bayesian quantile regression, double exponential prior,
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1. Introduction

Since the seminal work of Koenker and Bassett (1978), quantile regression has received increasing

attention both from a theoretical and from an empirical viewpoint. It is a statistical procedure based on

minimizing sums of asymmetrically weighted absolute residuals and can be used to explore the relation-

ship between quantiles of the response distribution and available covariates. Since a set of quantiles often

provides more complete description of the response distribution than the mean, quantile regression offers

a practically important alternative to classical mean regression. There exists a large literature on quantile

regression methods and we refer to Yu et al. (2003) and Koenker (2005) for an overview.

Let yi be a response variable and xi a k × 1 vector of covariates for the i-th observation. Let qp(xi)

denote the p-th (0 < p < 1) quantile regression function of yi given xi. Suppose that the relationship

between qp(xi) and xi can be modeled as qp(xi) = x′iβp, where βp is a vector of unknown parameters of

interest. Then we consider the quantile regression model given by

yi = x′iβp + ϵi, (i = 1, . . . , n),

where ϵi is the error term whose distribution (with density, say, fp(·)) is restricted to have the p-th quantile

equal to zero, that is,
∫ 0
−∞ fp(ϵi)dϵi = p.

∗Corresponding author
Email addresses: kozumi@kobe-u.ac.jp (Hideo Kozumi), genyako@hotmail.co.jp (Genya Kobayashi)

January 30, 2009



The error density fp(·) is often left unspecified in the classical literature. Thus, quantile regression

estimation for βp proceeds by minimizing

n∑
i=1

ρp
(
yi − x′iβp

)
, (1)

where ρp(·) is the check (or loss) function defined by

ρp(u) = u {p − I(u < 0)} , (2)

and I(·) denotes the usual indicator function. Since, however, the check function is not differentiable

at zero, we cannot derive explicit solutions to the minimization problem. Therefore, linear programing

methods are commonly applied to obtain quantile regression estimates for βp (see, e.g., Koenker and

Park (1996) and Portnoy and Koenker (1997)).

From a Bayesian point of view, Walker and Mallick (1999), Kottas and Gelfand (2001), and Hanson

and Johnson (2002) considered median regression, which is a special case of quantile regression with

p = 0.5, and discussed nonparametric modeling for the error distribution based on either Pólya tree

or Dirichlet process priors. Regarding general quantile regression, Yu and Moyeed (2001) proposed a

Bayesian modeling approach by noting that minimizing (1) is equivalent to maximizing a likelihood

function under the asymmetric Laplace error distribution (see also Tsionas (2003)).

As discussed in Yu and Moyeed (2001), the use of the asymmetric Laplace distribution for the er-

ror terms provides a natural way to deal with the Bayesian quantile regression problem. However, the

resulting posterior density for βp is not analytically tractable due to the complexity of the likelihood

function. Therefore, Yu and Moyeed (2001) considered Markov chain Monte Carlo (MCMC) methods

for posterior inference. Specifically, they used a random walk Metropolis algorithm with a Gaussian pro-

posal density centered at the current parameter value. Although the random walk sampler is a convenient

choice to generate candidate values, the corresponding acceptance probability depends on the value of p

through the likelihood function. As a result, tuning parameters of proposals such as a proposal step size

need to be adjusted so as to attain some appropriate acceptance rates for each value of p, and this limits

the applicability of the random walk sampler in practice.

This paper considers Bayesian quantile regression models using the asymmetric Laplace distribution

and proposes MCMC methods that are not only computationally efficient but also easy to implement.

In particular, we develop the Gibbs sampling algorithms based on a location-scale mixture representa-

tion of the asymmetric Laplace distribution. It is shown that the mixture representation provides fully

tractable conditional posterior densities and considerably simplifies the existing estimation procedures

for quantile regression models. To our knowledge, no previous work has employed a location-scale mix-

ture representation to analyze quantile regression models. Furthermore, we show that our approach can

readily incorporate a scale parameter and can be directly extended to Tobit quantile regression.

The rest of the paper is organized as follows. In section 2 we present a mixture representation of an

asymmetric Laplace distribution and derive full conditional densities for parameters. Section 3 discusses
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some possible extensions of our approach, including the incorporation of a scale parameter, the use of

double exponential prior for regression coefficients, and a Bayesian analysis of Tobit quantile regression

models. Some numerical results for both simulated and real data are presented in Section 4, and some

conclusions are given in the final section.

2. Posterior inference

2.1. Mixture representation

Following Yu and Moyeed (2001), we consider the linear model given by

yi = x′iβp + ϵi, (i = 1, . . . , n),

and assume that ϵi has the asymmetric Laplace distribution with density

fp(ϵi) = p(1 − p) exp
{
−ρp(ϵi)

}
, (3)

where ρp(·) is defined in (2). The parameter p determines the skewness of distribution and the p-th

quantile of this distribution is zero. It is also known that the mean and variance of the asymmetric

Laplace distribution with density (3) are given, respectively, by

E(ϵi) =
1 − 2p

p(1 − p)
and Var(ϵi) =

1 − 2p + 2p2

p2(1 − p)2 .

Some other properties of the asymmetric Laplace distribution can be found in Yu and Zhang (2005).

As shown in Kotz et al. (1998), the asymmetric Laplace distribution has various mixture repre-

sentations. For example, if ξ and η are independent and identical standard exponential distributions,

ξ/p − η/(1 − p) has the asymmetric Laplace distribution. To develop Gibbs sampling algorithms for the

quantile regression model, we utilize a mixture representation based on exponential and normal distribu-

tions, which is given by the following proposition.

Proposition. Let z be an standard exponential variable and u a standard normal variable. If a random

variable ϵ follows the asymmetric Laplace distribution with density (3), then we can represent ϵ as a

location-scale mixture of normals given by

ϵ = θz + τ
√

zu,

where

θ =
1 − 2p

p(1 − p)
and τ2 =

2
p(1 − p)

.

Proof. See Appendix.

From this result, the response yi can be equivalently rewritten as

yi = x′iβp + θzi + τ
√

ziui, (4)
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where zi ∼ E(1) and ui ∼ N(0, 1) are mutually independent, and E(ψ) denotes an exponential distribution

with mean ψ. As the conditional distribution of yi given zi is normal with mean x′iβp + θzi and variance

τ2zi, the joint density of y = (y1, . . . , yn)′ is given by

f (y|βp, z) ∝
 n∏

i=1

z
− 1

2
i

 exp

− n∑
i=1

(yi − x′iβp − θzi)2

2τ2zi

 , (5)

where z = (z1, . . . , zn)′.

2.2. Gibbs sampler

To proceed a Bayesian analysis, we assume the prior

βp ∼ N(βp0,Bp0), (6)

where βp0 and Bp0 are the prior mean and covariance of βp, respectively. As proved in Yu and Moy-

eed (2001), all posterior moments of βp exist under the normal prior (6). Using data augmentation, a

Gibbs sampling algorithm for the quantile regression model is constructed by sampling βp and z from

their full conditional distributions. Since (4) is a normal linear regression model conditionally on zi, it is

not difficult to derive the full conditional density of βp given by

βp|y, z ∼ N(β̂p, B̂p), (7)

where

B̂−1
p =

n∑
i=1

xix′i
τ2zi
+ B−1

p0 , β̂p = B̂p

 n∑
i=1

xi(yi − θzi)
τ2zi

+ B−1
p0βp0

 .
From (5) together with a standard exponential density, the full conditional distribution of zi is pro-

portional to

z−1/2
i exp

{
−1

2

(
δ̂2

i z−1
i + γ̂

2
i zi

)}
, (8)

where δ̂2
i = (yi − x′iβ)2/τ2 and γ̂2

i = 2 + θ2/τ2. Since (8) is the kernel of a generalized inverse Gaussian

distribution, we have

zi|y,βp ∼ GIG
(
1
2
, δ̂i, γ̂i

)
, (9)

where the probability density function of GIG(ν, a, b) is given by

f (x|ν, a, b) =
(b/a)ν

2Kν(ab)
xν−1 exp

{
−1

2
(a2x−1 + b2x)

}
, x > 0, −∞ < ν < ∞, a, b ≥ 0,

and Kν(·) is a modified Bessel function of the third kind (see Barndorff-Nielsen and Shephard (2001)).

There exist efficient algorithms to simulate from a generalized inverse Gaussian distribution (see, e.g.,

Dagpunar (1989) and Hörmann et al. (2004)), so that our Gibbs sampler defined in (7) and (9) can be

easily applied to quantile regression estimation.

We note that Tsionas (2003) also developed a Gibbs sampling algorithm for the quantile regression

model by employing a different representation of the asymmetric Laplace distribution. Although it does
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not require Metropolis–Hastings steps, the Gibbs sampler proposed by Tsionas (2003) needs to update

each element of βp separately. Thus his sampling algorithm may produce highly correlated draws and

become less efficient than our algorithm (see Liu et al. (1994)). Furthermore, Tsionas (2003) mentioned

that his Gibbs sampler is complicated and can be somewhat slow when the number of observations is

large.

3. Some extensions

3.1. Inference with scale parameter

In the previous section, we have considered the quantile regression model without taking into account

a scale parameter. If one may be interested to introduce a scale parameter σ > 0 into the model, our

approach can incorporate it by rewriting (4) as

yi = x′iβp + σθzi + στ
√

ziui. (10)

However this expression is not convenient to develop Gibbs samplers as the scale parameter appears in

the conditional mean of yi. Therefore, we reparameterize (10) as

yi = x′iβp + θvi + τ
√
σviui,

where vi = σzi. To complete the model specification, we assume that βp ∼ N(βp0,Bp0) and σ ∼
IG(n0/2, s0/2), where IG(a, b) denotes an inverse Gamma distribution with parameters a and b.

We now need to sample βp, v = (v1, . . . , vn)′ and σ from their conditional distributions. The usual

Bayesian calculations show that the full conditional density of βp is given by

βp|y, v, σ ∼ N(β̃p, B̃p), (11)

where B̃−1
p =

∑n
i=1

xix′i
τ2σvi

+ B−1
p0 and β̃p = B̂p

{∑n
i=1

xi(yi−θvi)
τ2σvi

+ B−1
p0βp0

}
. Similarly to the previous section,

we can easily obtain that

vi|y,βp, σ ∼ GIG
(
1
2
, δ̃i, γ̃i

)
, (12)

where δ̃2
i = (yi − x′iβ)2/τ2σ, and γ̃2

i = 2/σ + θ2/τ2σ. By noting that vi ∼ E(σ), the full conditional

density of σ is proportional to(
1
σ

) n0
2 +

3
2 n+1

exp

− 1
σ

 s0

2
+

n∑
i=1

vi +

n∑
i=1

(yi − x′iβp − θvi)2

2τ2vi


 ,

so that we have

σ|y,βp, v ∼ IG
( ñ
2
,

s̃
2

)
, (13)

where ñ = n0 + 3n and s̃ = s0 + 2
∑n

i=1 vi +
∑n

i=1(yi − x′iβp − θvi)2/τ2vi. Consequently, the introduction

of scale parameter does not cause any difficulties in our Gibbs sampling algorithm.
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3.2. Double exponential prior

Instead of a normal prior, we consider an important alternative, that is, a double exponential prior for

βp. The density of double exponential prior is given by

π(βp) =
k∏

j=1

π(βp j) ∝
k∏

j=1

exp
(
−λ0|βp j − βp j0|

)
,

where βp j is the jth element of βp, and βp j0 and λ0 are hyperparameters. Using this prior distribu-

tion, Yu and Stander (2005) showed that all posterior moments of βp exist for Tobit quantile regression

models. Recently, Park and Casella (2008) considered this prior in the context of Lasso estimation (Tib-

shirani (1996)) and discussed the choice of hyperparameters.

As shown in Park and Casella (2008), the double exponential density can be expressed as

π(βp j) =
∫ ∞

0

1√
2πω j

exp
− (βp j − βp j0)2

2ω j

 exp

−λ2
0ω j

2

 dω j

where ω j has an exponential distribution with mean 2/λ2. This suggests the following hierarchical

representation of the prior:

βp|ω ∼ N(βp0,Ω),

ωi ∼ E(2/λ2
0),

where ω = (ω1, . . . , ωk)′ and Ω is a diagonal matrix with the jth element ω j. It follows from this

specification that the full conditional distributions of βp, σ and v are the same as those under the normal

prior with Bp0 replaced with Ω. Also, the full conditional density of ω j is proportional to

ω
− 1

2
j exp

[
−1

2

{
(βp j − βp j0)2ω−1

j + λ
2
0ω j

}]
,

which implies that

ω j|y,βp, σ, v ∼ GIG
(
1
2
, |βp j − βp j0|, λ0

)
.

3.3. Tobit quantile regression

Tobit quantile regression models have received much attention in the classical literature (see, e.g.,

Powell (1986), Hahn (1995), Buchinsky and Hahn (1998) and Bilias et al. (2000)). Yu and Stander (2005)

proposed a Bayesian framework for Tobit quantile regression based on the asymmetric Laplace distribu-

tion. Here we show that our methodology is directly extended to the analysis of Tobit quantile regression

models.

As in the standard Tobit model, we assume that the response yi is generated according to

yi =


y∗i if y∗i > 0,

0 if y∗i ≤ 0,

y∗i = x′iβp + ϵi, (14)
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where y∗i is a latent variable. To develop a Tobit quantile regression model, we again assume that ϵi has

the asymmetric Laplace distribution and rewrite (14) as

y∗i = x′iβp + θvi + τ
√
σviui, (15)

where ui ∼ N(0, 1) and vi ∼ E(σ).

Since the model (15) has a regression form conditionally on vi, the method developed by Chib (1992)

can be applied to the sampling of y∗i , that is,

y∗i |y,βp, v, σ ∼ yiI(yi > 0) + TN (−∞,0](x′iβp + θvi, τ
2σvi)I(yi = 0),

whereTN (a,b](µ, σ2) denotes a normal distribution with mean µ and varianceσ2 truncated on the interval

(a, b]. Moreover, by assuming that βp ∼ N(βp0,Bp0) and σ ∼ IG(n0/2, s0/2), the full conditional

distributions of βp, v and σ can be easily obtained from (11)–(13) by replacing yi everywhere with y∗i .

Thus our approach offers a simple sampling method for Tobit quantile regression models compared with

that of Yu and Stander (2005), which relies on Metropolis-Hastings algorithms and requires to control

tuning parameters for each value of p.

4. Numerical examples

We present three examples to illustrate the Gibbs sampling methods developed in Sections 2 and 3.

The first example uses a simulated data set and the second is based on the real data analyzed by Wang

et al. (1998). While the first and second examples estimate the quantile regression models, the third

example considers the Tobit quantile regression model using the data from Mroz (1987).

4.1. Simulated data

A data set of n = 100 observations was generated from the model

y = β1 + β2x2 + β3x3 + β4x4 + β5x5 + ϵ, ϵ ∼ N(0, 1),

where each covariate was simulated from a uniform distribution on (−2, 2) and all the β j were set to one.

The normal prior (6) was used for βp and the hyperparameters were chosen as βp0 = 0 and Bp0 = 100I.

We fitted the quantile regression model without a scale parameter for p = 0.05, 0.5 and 0.95.

To assess the sampling efficiency of our algorithm, we estimated inefficiency factors for βp by run-

ning the Gibbs sampler for 15000 iterations with an initial burn-in of 5000 iterations. The inefficiency

factor is defined as a ratio of the numerical variance of the sample mean from the Markov chain to the

variance from independent draws (see Chib (2001)). The results are summarized in Table 1 together with

those obtained from the random walk sampler of Yu and Moyeed (2001). When applying the random

walk sampler, we adjusted proposal step sizes in order that the inefficiency factors achieve the lowest

values.

It is observed that the inefficiency factors for the Gibbs sampler are smaller than those for the random

walk sampler in all the cases. This indicates that our Gibbs sampler is more efficient than the random
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walk sampler. It is also found that both the Gibbs sampler and the random walk algorithm attain the

smallest inefficiency factors in the case of p = 0.5.

4.2. Patent data

As an real data example, we consider the data examined by Wang et al. (1998). The data set contains

information about the number of patent applications from 70 pharmaceutical and biomedical compa-

nies in 1976. A more detailed explanation of the data can be found in Hall et al. (1988). Following

Tsionas (2003), we analyze the relationship between patents and research and development (R&D) by

estimating the model

log(1 + N) = β1 + β2 log(RD) + β3 log(RD)2 + β4 log
( RD
S ALE

)
+ ϵ,

where N is the number of patent applications, RD is R&D spending, and RD/S ALE is the ratio of

R&D to sales. In this study, we included a scale parameter σ and assumed that βp ∼ N(0, 100I) and

σ ∼ IG(5/2, 0.1/2). Using the prior specification, we ran the Gibbs sampler for 20000 iterations and

discarded the first 50000 iterations as a burn-in period.

Figure 1 shows the sample autocorrelation functions of βp for p = 0.5. It is observed that the

autocorrelations from the Gibbs sampler generally decline to zero by lag 20. Although different priors

are employed in Tsionas (2003), a comparison with the results shown in Figure 3 of Tsionas (2003)

shows that the autocorrelations from our Gibbs sampler decay more quickly than those from the Gibbs

sampler of Tsionas (2003). This is because the Gibbs sampler of Tsionas (2003) updates each element

of βp separately while our algorithm draws all the elements jointly.

4.3. Labor supply data

To illustrate our method for Tobit quantile regression models, we consider the data set from Mroz (1987),

which is comprised of 753 married women between the ages of 30 and 60. The response variable is given

by the total number of hours the wife worked for a wage outside the home during year 1975 and mea-

sured in 100 hours. Of the 753 women in the sample, 325 of the women worked zero hours and the

corresponding responses are treated as left censored at zero. As the explanatory variables, we include a

constant term, income which is not due to the wife (nwi f einc), years of education (educ), years of work

experience (exper), wife’s age (age), the number of children under 6 years old (kidslt6), and the number

of children over 6 years old (kidsge6).

For the regression coefficients βp, we considered both the normal and the double exponential prior,

and specified the following hyperparameters: βp0 = 0, Bp0 = 100I and λ0 = 0.14. Note that the

prior variances are the same under both the priors. Furthermore, we incorporated a scale parameter σ

and assumed that σ ∼ IG(10/2, 0.02/2). All results are based on an MCMC sample of 10000 draws

obtained after a burn-in of 5000 iterations.

Table 2 shows the posterior estimates of the parameters. From the table, we see that both the priors

yield very similar posterior estimates and notice that posterior means of some parameters (e.g., the co-

efficients on educ and kidslt6) are different across the different values of p. To study more closely the
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relationships between the quantiles and the posterior estimates, Figure 2 plots the posterior estimates of

βp against various values of p under the normal prior. We observe from the figure that nwi f einc, kidslt6

and age are negatively associated with the wife’s work in the lower and middle quantiles, but nwi f einc

and kidslt6 become less related in the higher quantiles. On the contrary, educ and exper have positive

effects on the wife’s working time in the lower and middle quantiles, but they are also less related in the

higher quantiles. Finally, the results for expersq and kidsge6 show almost flat paths compared with the

other covariates, indicating that they have constant effects on the wife’s propensity to work.

5. Conclusions

We have developed a Gibbs sampling method for quantile regression models based on the location-

scale mixture representation of the asymmetric Laplace distribution. The proposed Gibbs sampling al-

gorithm is easy to implement in practice since one cycle of the algorithm can be accomplished by the

simulation from a normal and a generalized inverse Gaussian distribution. We have also discussed some

extensions of our approach, which are inference with scale parameters, the use of double exponential

priors, and Tobit quantile regression analysis. Finally, we have provided illustrations with simulated and

real data sets and shown the superiority of our Gibbs sampler to the existing sampling methods.

The mixture representation utilized in this paper allows us to express a quantile regression model as a

normal regression model. Therefore, our approach can be further extended to more complicated models

such as nonlinear models, and this is left for future research.
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Appendix

Suppose that a random variable ϵ has the probability density function given by

fp(ϵ) = p(1 − p) exp
{
−ρp (ϵ)

}
,

where ρp(ϵ) = ϵ{p − I(ϵ < 0)}. Then the characteristic function of ϵ is derived as

ϕ(t) = E[eitϵ]

=

∫ ∞

−∞
eitϵ fp (ϵ) dϵ

=

∫ 0

−∞
p(1 − p)eitϵ+(1−p)ϵdϵ +

∫ ∞

0
p(1 − p)eitϵ−pϵdϵ

= p(1 − p)
{

1
it + (1 − p)

+
1

p − it

}
=

{
1

p(1 − p)
t2 − i

1 − 2p
p(1 − p)

t + 1
}−1

,

where i2 = −1.

Let z be an standard exponential variable and u a standard normal variable. The characteristic func-

tion of ϵ′ = θz + τ
√

zu can be expressed as

φ(t) = E
[
eit(θz+τ

√
zu)

]
=

∫ ∞

0
eitθzE

[
eitτ
√

zu
]

e−zdz.

Since u follows a standard normal distribution, we have

E
[
eitτ
√

zu
]
= e−

1
2 t2τ2z.

Thus, the characteristic function of ϵ′ is obtained as

φ(t) =
∫ ∞

0
e−z(1+ 1

2 t2τ2−iθt)dz

=

(
1
2
τ2t2 − iθt + 1

)−1

.

These two characteristic functions are equivalent when θ = 1−2p
p(1−p) and τ2 = 2

p(1−p) .
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Table 1: Simulated data: Inefficiency factors are shown.

Gibbs sampler Random walk sampler

p 0.05 0.5 0.95 0.05 0.5 0.95

β1 11.902 3.244 14.141 59.486 16.348 45.394

β2 12.150 3.904 16.663 56.312 14.832 51.253

β3 20.085 3.540 11.262 71.708 24.904 20.252

β4 13.743 5.564 17.461 81.104 24.578 59.490

β5 10.572 3.615 11.486 39.880 21.221 69.212

Table 2: Labor supply data: Posterior means and standard deviations are shown.

Normal prior

Explanatory p = 0.05 p = 0.5 p = 0.95

Variable Mean SD Mean SD Mean SD

constant -5.833 3.083 11.883 4.120 22.803 3.558

nwi f einc -0.132 0.043 -0.099 0.045 -0.059 0.036

educ 0.858 0.139 0.859 0.209 0.331 0.178

exper 0.948 0.155 1.413 0.181 0.798 0.181

exper2 -0.018 0.004 -0.018 0.006 -0.012 0.006

age -0.354 0.057 -0.607 0.072 -0.269 0.065

kidslt6 -7.237 1.336 -9.630 1.142 -4.855 1.145

kidsge6 -0.131 0.278 -0.437 0.394 0.223 0.400

Double exponential prior

Explanatory p = 0.05 p = 0.5 p = 0.95

Variable Mean SD Mean SD Mean SD

constant -5.290 3.201 11.274 4.551 23.898 3.653

nwi f einc -0.129 0.041 -0.100 0.045 -0.057 0.037

educ 0.839 0.150 0.883 0.216 0.307 0.177

exper 0.929 0.142 1.410 0.182 0.769 0.188

exper2 -0.017 0.004 -0.018 0.006 -0.011 0.006

age -0.361 0.058 -0.600 0.074 -0.282 0.067

kidslt6 -7.179 1.243 -9.611 1.160 -4.820 1.236

kidsge6 -0.159 0.256 -0.402 0.404 0.160 0.380
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Figure 1: Patent data: Sample autocorrelation functions are shown for p = 0.5.
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Figure 2: Labor supply data: Posterior means (solid line) and 95% credible intervals (dotted lines) are plotted for the normal

prior.
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