
2016-8

Kazuhiko Kakamu  Haruhisa Nishino

 BAYESIAN ESTIMATION OF BETA-TYPE DISTRIBUTION
PARAMETERS BASED ON GROUPED DATA



BAYESIAN ESTIMATION OF BETA-TYPE DISTRIBUTION

PARAMETERS BASED ON GROUPED DATA

Kazuhiko Kakamu ∗ Haruhisa Nishino †

Abstract

This study considers the estimation method of generalized beta (GB) distribution parameters based on

grouped data from a Bayesian point of view. Because the GB distribution, which was proposed by McDonald

and Xu (1995), includes several kinds of familiar distributions as special or limiting cases, it performs at least

as well as those special or limiting distributions. Therefore, it is reasonable to estimate the parameters of the

GB distribution. However, when the number of groups is small or when the number of parameters increases,

it may become difficult to estimate the distribution parameters for grouped data using the existing estimation

methods. This study uses a Tailored randomized block Metropolis–Hastings (TaRBMH) algorithm proposed

by Chib and Ramamurthy (2010) to estimate the GB distribution parameters, and this method is applied to

one simulated and two real datasets. Moreover, the Gini coefficients from the estimated parameters for the

GB distribution are examined.
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1 Introduction

The estimation of income distributions has played an important role in the measurement of inequality (e.g., the

Gini coefficient), and grouped data (i.e., class frequency data) has been widely used to estimate the distribution

parameters. 1 In grouped data, although xj exists for j = 1, 2, . . . , n, which is assumed to be in ascending

order, only income xi of the nith observation for i = 1, 2, . . . , k is observable, where strictly k < n. In this

situation, we seek to restore the true distribution (i.e., the dotted line) from the histogram drawn using the data

by estimating the parameters of the hypothetical distribution as shown in Figure 1. Furthermore, a vast body of

literature has considered the estimation methods and/or hypothetical distributions.

Although the maximum likelihood estimation (MLE) has been widely used and is probably the most com-

mon method of estimating parameters for hypothetical distributions from grouped data (see McDonald and

Ransom, 2008), several estimation methods have been proposed and used to estimate the parameters of the hy-

pothetical distributions, including minimum chi-square, the scoring method, least square, method of moments,

least lines, generalized method of moments, generalized least square, and Markov chain Monte Carlo (MCMC)

methods (see e.g., Chotikapanich and Griffiths, 2000; Chotikapanich et al., 2007; McDonald and Ransom,

1979a,b; Nishino and Kakamu, 2011; van Dijk and Kloek, 1980). One reason why several estimation methods

have been proposed despite that the MLE is widely used is that the estimates of the population characteris-

tics depend on the functional form and estimation technique by McDonald and Ransom (1979a,b). Therefore,

several hypothetical distributions have also been proposed and assumed as income distributions.

Among hypothetical distributions, generalized beta (GB) proposed by McDonald and Xu (1995) is the

most flexible beta-type distributions, because it includes the most distributions. For example, it can be used

as an income distribution and includes special or limiting cases. Comparisons of the hypothetical distributions

have been examined in studies such as Atoda et al. (1988); Bordley et al. (1996); Kloek and van Dijk (1978);

1Studies on the estimation of income distribution from individual data exist, such as Chotikapanich and Griffiths (2008); Hasegawa

and Kozumi (2003); Tachibanaki et al. (1997). However, we restrict our discussion to grouped data. There is another type of dataset

that includes population shares and group mean incomes, and Hajargasht et al. (2012) consider this situation.
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McDonald and Mantrala (1995); McDonald and Ransom (1979a); Majumder and Chakravarty (1990); Salem

and Mount (1974); Slottje (1984); Tachibanaki et al. (1997). Most hypothetical distributions assumed in these

papers are special or limiting GB distributions, including, for example, the GB distribution of the first and

second kind (GB1 and GB2, respectively), proposed by McDonald (1984), the Singh–Maddala (SM) distribu-

tion, the beta distribution of the first kind, the beta distribution of the second kind, the gamma distribution, the

chi-square distribution, and the exponential distribution (see Figure 2 in McDonald and Xu (1995) for details

on the relationship of the distributions).

These papers cover many but not all studies that examine the estimation methods and hypothetical distri-

butions from grouped data. However, as shown previously, choosing the distribution and estimation method

simultaneously is critical. In addition, when the number of groups is small or when we have to estimate a large

number of parameters, it sometimes becomes difficult to estimate the distribution parameters using the existing

estimation methods in our experiments (see also McDonald and Mantrala, 1995). Therefore, it is reasonable to

consider estimation methods that do not require the number of groups, or the hypothetical distribution. Thus,

we consider the estimation procedure for the GB distribution proposed by McDonald and Xu (1995), which is

the most flexible distribution in the class of beta-type distributions, as later discussed.

In this paper, we take a Bayesian approach and use the Tailored randomized block Metropolis–Hastings

(TaRBMH) algorithm proposed by Chib and Ramamurthy (2010) to estimate the parameters of the GB dis-

tribution. We compare this algorithm with the existing one proposed by Chotikapanich and Griffiths (2000)

using both simulated and real datasets and compare the Bayesian estimates with the MLE ones in Bordley

et al. (1996) using a real dataset. The results show that the TaRBMH algorithm can sample MCMC draws

more efficiently than the algorithm by Chotikapanich and Griffiths (2000). Moreover, the Gini coefficient from

the GB distribution is examined using a real dataset, and we can show that it estimates the Gini coefficient

accurately despite that the number of groups are relatively small.

The rest of this paper is organized as follows. In the next section, we introduce the features of GB distri-

bution, including the probability density, cumulative distribution, and the likelihood functions, and we explain
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the MCMC estimation procedure for this distribution. In Section 3, we examine the numerical examples of

both simulated datasets and real ones that include income data from both the United States and Japan. In

the Japanese dataset, the performance of the Gini coefficient is also discussed. In Section 4, we conclude the

discussion and state the remaining issues.

2 The GB Distribution

2.1 The Density, Cumulative Distribution, and Likelihood Functions

While various probability distributions are used to estimate the parameters of a hypothetical income distribution,

the GB distribution includes various probability distributions as special or limiting cases (see McDonald and

Xu, 1995), most of which are displayed in the previous section. Therefore, it is reasonable to estimate the

parameters of the GB distribution, because the GB distribution performs at least as well as the special or

limiting distributions.

The GB distribution has five parameters (a, b, c, p, q), and its probability density function (PDF) is written

as

f(x) =
|a|xap−1

[
1− (1− c)

(x
b

)a]q−1

bapB(p, q)
[
1 + c

(x
b

)a]p+q , 0 < xa <
ba

1− c
, (1)

where B(p, q) is a beta function. For example, if we set c = 0 or c = 1, the distributions are reduced to GB1

and GB2, respectively. Moreover, if we set c = 1 and p = 1, it is reduced to an SM distribution (see Singh and

Maddala, 1976), which a desirable distribution in many empirical applications. Detailed relationships among

the class of distributions are summarized in McDonald and Xu (1995).

To introduce the cumulative distribution function (CDF), we provide the following function:

Ix(p, q) =
Bx(p, q)

B(p, q)
,

where Bx(p, q) is an incomplete beta function. Then, the CDF is written as

F (x) = Iz(p, q), where z =

(x
b

)a
1 + c

(x
b

)a . (2)
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Given the PDF and CDF, we define the likelihood function following Nishino and Kakamu (2011), which

is based on the concept of selected order statistics. 2 To explain the likelihood function, let θ = (a, b, c, p, q)′

be the vector of parameters and let x = (x1, x2, . . . , xk)
′ be the vector of observations. Then, the likelihood

function is defined as follows:

L(x|θ) = n!
F (x1)

n1−1

(n1 − 1)!
f(x1) (3)

×

{
k∏

i=2

(F (xi)− F (xi−1))
ni−ni−1−1

(ni − ni−1 − 1)!
f(xi)

}
(1− F (xk))

n−nk

(n− nk)!
.

If we substitute (1) and (2) for (4), it becomes the likelihood function for the GB distribution. 3

2.2 Posterior Analysis

Because we adopt a Bayesian approach, we complete the model by specifying the prior distribution over the

parameters. 4 We apply the following prior:

π(θ) = π(a)π(b)π(c)π(p)π(q).

Given a prior density π(θ) and the likelihood function in (4), the joint posterior distribution can be expressed

as

π(θ|x) ∝ π(θ)L(x|θ). (4)

Finally, we assume the following prior distributions:

a ∼ N (µ0, τ
2
0 ), b ∼ G(α0, β0), c ∼ B(γ0, δ0), p ∼ G(ϵ0, ζ0), q ∼ G(η0, ν0),

2In the MLE, the likelihood (which is based on the multinomial distribution) is widely used. Nishino and Kakamu (2011) applied

a likelihood based on selected order statistics to the log-normal distribution, which is more exact than that based on the multinomial

distribution. Therefore, we use this likelihood and the concept of selected order statistics as summarized in, for example, David and

Nagaraja (2003). However, which likelihood we use is not critical.
3If the PDF and CDF for the concerning distribution are available, we can apply this likelihood function to the distribution. The

PDFs and CDFs for the beta-type distributions are summarized in, for example, Hajargasht et al. (2012); Kleiber and Kotz (2003).
4A Bayesian approach was first proposed by Chotikapanich and Griffiths (2000) using a random walk Metropolis–Hastings

(RWMH) algorithm. In this paper, we compare the performance of their algorithm with our proposed algorithm in the numerical

examples. Therefore, their algorithm is introduced in Appendix A.
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where G(a, b) and B(a, b) denote the gamma and beta distribution, respectively.

To obtain the posterior estimates, we implement the TaRMBH algorithm proposed by Chib and Rama-

murthy (2010) as follows.

1. Separate θ into a 3× 1 vector θ1 and a 2× 1 vector θ2 randomly.

2. For j = 1, 2, implement the following Metropolis–Hastings steps.

(a) Generate θnew
j from a multivariate t distribution, t(θ̂j ,Σj , ν), with mean θ̂j , covariance Σj , and ν

degrees of freedom. 5 Here,

θ̂j = arg max
θj

log {π(θ)L(x|θ)} ,

θ = (θ′
1,θ

(m−1)′
2 )′ for j = 1, and θ = (θ

(m)′
1 ,θ′

2)
′ for j = 2 using simulated annealing by Goffe

et al. (1994). Here,

Σj =

(
−∂2 log {π(θ)L(x|θ)}

∂θj∂θ
′
j

)−1
∣∣∣∣∣∣
θj=θ̂j

.

(b) If j = 1, compute

α1(θ
m−1
1 ,θnew

1 ) = min

{
π(θnew

1 |θ(m−1)
2 ,x)q(θ

(m−1)
1 |θ̂1,Σ1)

π(θ
(m−1)
1 |θ(m−1)

2 ,x)q(θnew
1 |θ̂1,Σ1)

, 1

}
,

and if j = 2, compute

α2(θ
m−1
2 ,θnew

2 ) = min

{
π(θnew

2 |θ(m)
1 ,x)q(θ

(m−1)
2 |θ̂2,Σ2)

π(θ
(m−1)
2 |θ(m)

1 ,x)q(θnew
2 |θ̂2,Σ2)

, 1

}
,

where q(θnew
j |θ̂j ,Σj) is a multivariate t distribution given in (a).

(c) Generate a value uj from U(0, 1), where U(a, b) is an uniform distribution on the interval (a, b).

(d) If uj ≤ αj

(
θ
(m−1)
j ,θnew

j

)
, set θ(m)

j = θnew
j , otherwise θ

(m)
j = θ

(m−1)
j .

3. Return to step 1, and set m to m+ 1.
5In the numerical examples discussed below, we set ν = 15 as recommended by Chib and Ramamurthy (2010). In addition, as in

Chib and Ramamurthy (2010), the inverse of the negative Hessian, which is a covariance matrix Σj , may not be positive definite. Thus,

we also compute a modified Cholesky algorithm by Nocedal and Wright (2000).
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In all the numerical examples discussed in the next section, we set the hyper parameters as µ0 = 0, τ20 =

100, γ0 = δ0 = ϵ0 = ζ0 = η0 = ν0 = 1.0. Results reported in the next section are generated using Ox version

7.00 (OS X 64/U) (Doornik, 2009).

3 Numerical Examples

3.1 Simulated Data

To illustrate the Bayesian approach discussed in the previous section, we compare the algorithm with that

by Chotikapanich and Griffiths (2000) using a simulated dataset. We set the number of observations to n =

100, 000 and assume a decile number of groups (k = 9). Given n and k, we assume that the true data-generating

process (DGP) is a GB distribution,6 where the parameters are a = 5, b = 30, c = 0.95, p = 0.5, and q = 0.8.

Furthermore, generate xj for j = 1, 2, . . . , n. The generated random numbers are sorted in ascending order,

and xi corresponds to the nith observation. Then, i = 1, 2, . . . , k is picked up and x = (x1, x2, . . . , xk)
′

are collected. Given the dataset, we run a RWMH algorithm using 800, 000 iterations and discarding the first

300, 000, while we run a TaRBMH algorithm using 11, 000 iterations and discarding the first 1, 000.

Table 1 shows the posterior estimates of the parameters using RWMH and TaRBMH. From Table 1, we

first observe that the posterior means are close to each other, while the 95% credible intervals from TaRBMH

are slightly wider than those from RWMH. In addition, all parameters include true values in the 95% credible

intervals. Therefore, we conclude that both Bayesian approaches work well in the parameter estimation of the

GB distribution. However, a 30-times difference appears in the inefficiency factors (IF), which approximate the

ratio of the numerical variance of the estimate from the MCMC chain relative to that from hypothetical i.i.d.

draws.

To illustrate the differences in the mixing of the two algorithms over the parameter space, we plot the

sample draws from the posterior distribution for the parameters together with auto-correlation functions (ACFs)

6To generate a random number from GB with parameters a, b, c, p, and q, first generate Z from a beta distribution with parameters

p and q. Then, X = b

(
Z

1− cZ

) 1
a

becomes the random number from the GB distribution.
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in Figure 2. The top panel corresponds to the draws from the TaRBMH algorithm, and the bottom panel

corresponds to those from the RWMH algorithm. As these plots show, the RWMH chain is highly persistent

with the ACFs retaining significant mass even at lag length 300. On the other hand, the TaRBMH ACFs decay

quickly (within lag length 200 for all parameters).

Finally, we discuss the reason why the convergence of the MCMC chain is slow. Figure 3 shows the counter

plots of the marginal joint posterior distributions of each parameter. Figure 3 implies that correlations between

a and p, between a and q, between b and q, and between p and q are very high. In the GB distribution, the shape

parameters are a, p, and q, and several combinations of these three parameters might lead to similar distribution

shapes. Therefore, such high correlations lead to the identification problem and make the convergence of the

MCMC chain slow. However, because TaRBMH speeds up convergence, we can conclude that our algorithm

is superior to the RWMH algorithm in terms of mixing.

3.2 U.S. Family Income Data

As far as we know, the GB distribution is estimated for grouped data only by McDonald and Xu (1995) and

Bordley et al. (1996). While McDonald and Xu (1995) did not seem to successfully estimate parameter c and

estimated the GB2 distribution instead, Bordley et al. (1996) estimated all parameters including c every 5 years

from 1970 to 1990. Therefore, it is reasonable to compare the results from Bordley et al. (1996) with the

Bayesian approaches. We examine U.S. income data, which is estimated in Bordley et al. (1996). To estimate

the parameters of the GB distribution from these data, we run an RWMH algorithm using 200, 000 iterations

and discarding the first 100, 000, while we run a TaRBMH algorithm using 11, 000 iterations and discarding

the first 1, 000 for every year.

Table 2 shows the estimation results from Bordley et al. (1996) and the posterior estimates of the parameters

using the RWMH and TaRBMH algorithms. First, if we compare the posterior estimates of both algorithms,

we see that the 95% credible intervals from the TaRBMH algorithm are wider than those from the RWMH

algorithm. However, the posterior means are generally close to each other and the IF from the TaRBMH
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algorithm is much smaller than that from the RWMH algorithm except for the year 1975. Therefore, the

TaRBMH algorithm searches through wider parameter spaces efficiently, and we focus on the results from the

TaRBMH thereafter.

Next, we compare the estimation results from Bordley et al. (1996) with the posterior estimates. Focusing

on the results for 1970 shows that all MLE estimates are close to the posterior means and are included in the

95% credible intervals. The same situation occurs for the results for 1975. However, for the results for 1980,

the MLE estimates of the parameters b, c, and q out of the five total parameters are not within the 95% credible

intervals of the Bayesian estimates. In addition, four and five parameters respectively in 1985 and 1990 are not

within the 95% credible intervals. Therefore, these results imply that the MLE estimates may not achieve the

optima.

To confirm the effects of parameter c, its marginal posterior distributions are displayed in Figure 4. The

figure shows a clear truncation of the posterior distribution at 1.0 in 1975. However, the truncation is not

obvious in 1970, 1980, 1985, and 1990. Therefore, the estimates of c in 1970, 1980, 1985, and 1990 are not

1.0. The differences in the estimates may be caused by the failure of the global maximization in the MLE.

Moreover, parameter c plays an important role in the estimation of the income distribution in the United States

because parameter c is estimated to be different from 1.0.

Once the parameters of the GB distribution are estimated, we can calculate the Gini coefficient from the

parameters. 7 Table 3 and Figure 5 show the Gini coefficients of the U.S. family income data. The Gini coeffi-

cients are calculated from the MCMC draws of TaRBMH. From the results, we can observe that the inequalities

have increasing trends. To confirm this tendency, Figure 6 shows the mobility of income distributions. From

the figure, we can confirm that the modes slightly move to higher income and becomes lower. These might be

the cause of the increasing trend of the Gini coefficients.

7There is no analytical expression of the Gini coefficient for the GB distribution that differs from other beta-type distributions.

Therefore, we calculate the Gini coefficient from the GB distribution using numerical integration.
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3.3 Family Income and Expenditure Survey in Japan

Finally, we examine data from the Family Income and Expenditure Survey (FIES) in Japan prepared by the

Statistics Bureau, Ministry of Internal Affairs and Communications. We use workers’ households data from

the 2009 FIES. Quintile and decile data exist, and the sample size in both datasets is n = 10, 000. To estimate

the parameters of the GB distribution from the FIES data in Japan, we run a TaRBMH algorithm using 21, 000

iterations and discarding the first 1, 000.

Table 4 shows the posterior estimates from the FIES data in Japan. Table 4 implies that the estimates of c

differ from 1.0. Therefore, parameter c also plays an important role in income distribution in Japan. We find

that the posterior means and the 95% credible intervals differ slightly. This is especially the case in parameter p,

where only the number of groups differs. Therefore, the posterior means in one result are included in the 95%

credible intervals in the other result. To visually see the differences, GB distributions fitted to the representative

sample are displayed in Figure 7. The figure implies that the mode and the shape in the distribution are slightly

different. However, both distributions seem to fit to the histogram drawn from the dataset. Therefore, our

proposed algorithm works well even when the number of groups is small.

Finally, we examine the estimated Gini coefficient from the GB distribution as same as the case of U.S.

family income data. Table 5 shows the posterior estimates of the Gini coefficients. Although the posterior

estimates of the original parameters slightly differ, those of the Gini coefficients are similar to each other.

However, the 95% credible interval of the quintile data is wider than that of the decile data. Figure 8 shows

the posterior distributions of the Gini coefficients, and we confirm that the posterior mode is different and the

distribution from the quintile data is skewed. As shown by Kakamu (2015), 8 the effect of the number of

groups may also appear in the distribution variance of the Gini coefficient in the GB distribution. To discuss the

accuracy of the Gini coefficient, we calculated the lower and upper bounds of the Gini coefficient as proposed by

8Kakamu (2015) examined the performance of the Gini coefficients assuming Singh–Maddala and Dagum distributions using Monte

Carlo experiments and showed that the effects of not only the number of observations but also the number of groups appears in the Gini

coefficients in terms of the root mean square errors (RMSEs).
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Gastwirth (1972), which are 0.238 and 0.261, respectively, for the quintile data. 9 The result indicates that both

posterior means are included in the lower and upper bounds of the Gini coefficient. The 95% credible interval

for the decile data approaches the lower and upper bounds, whereas that for the quintile data is slightly wider

than these bounds. Then, the GB distribution can estimate the Gini coefficient accurately, and the accuracy

increases as the number of groups increases.

4 Conclusions

This paper considered the estimation of the GB distribution parameters for grouped data from a Bayesian point

of view. To estimate the parameters of the distribution, we utilized the TaRBMH algorithm proposed by Chib

and Ramamurthy (2010). We examined numerical examples with one simulated and two real datasets. In the

numerical examples, we compared a TaRBMH algorithm with the RWMH algorithm proposed by Chotika-

panich and Griffiths (2000). From the results, we confirmed that TaRBMH is more efficient than RWMH in

terms of mixing. In addition, using empirical results of U.S. income data, we showed that the estimated pa-

rameters of our Bayesian approach may differ from those of the MLE. Finally, our Bayesian approach could

estimate the parameters of the GB distribution even if the number of groups are relatively small, and the Gini

coefficient from the GB distribution could be calculated accurately.

Finally, 10, 000 iterations of TaRBMH takes approximately 6 hours, while 2, 000, 000 iterations of RWMH

takes about 10 minutes. The computation time is critical, but the shorter iterations of the RWMH algorithm

might lead to the failure of an accurate estimation of the true parameters. We observed that the 95% credible

intervals from RWMH are narrower than those from TaRBMH in the simulated and real datasets. Although it is

not reported in this paper, more than 50, 000, 000 iterations were required to make the MCMC chain converge

using FIES data with RWMH, and this takes more than 6 hours. Overcoming efficiency issues of the MCMC

9To calculate the nonparametric lower and upper bounds by Gastwirth (1972), class income means are required in addition to income

classes and the frequencies. In the income data from FIES, the class income means are also available. Thus, we can compare the results

in this datasets.
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chain and time-consuming problems simultaneously is left to future work.

A MCMC Schemes by Chotikapanich and Griffiths (2000)

In this appendix, we briefly explain the MCMC procedures proposed by Chotikapanich and Griffiths (2000).

Chotikapanich and Griffiths (2000) first proposed an MCMC method to estimate the distribution parameters

from grouped data using an RWMH algorithm. Their algorithm is as follows.

1. Generate a candidate value θnew from N (θ(m−1), c2Σ), where c is a tuning parameter and Σ is the

maximum likelihood covariance estimate. 10

2. Compute

α
(
θ(m−1),θnew

)
= min

{
1,

π(θnew|x)
π(θ(m−1)|x)

}
.

If any of the elements of θnew fall outside the feasible parameter region, α
(
θ(m−1),θnew

)
= 0.

3. Generate a value u from U(0, 1).

4. If u ≤ α
(
θ(m−1),θnew

)
, set θ(m) = θnew, otherwise set θ(m) = θ(m−1).

5. Return to step 1, with m set to m+ 1.
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Table 1: Simulated data

RWMH TaRBMH
true values Mean 95%CI IF Mean 95%CI IF

a 5.00 5.171 4.258 6.080 11961.408 5.554 4.058 7.451 178.217
b 30.00 30.417 28.318 33.305 6585.192 30.169 28.131 33.413 93.938
c 0.95 0.945 0.913 0.972 8297.133 0.950 0.905 0.980 85.169
p 0.50 0.470 0.382 0.589 11591.862 0.440 0.304 0.618 151.172
q 0.80 0.784 0.554 1.195 7977.529 0.726 0.439 1.185 148.400

Note: Posterior means (Mean), 95% credible intervals (95%CI), and inefficiency factors
(IF) are displayed. The acceptance rates are as follows: around 20% in the RWMH
algorithm, and around 90% in the TaRBMH algorithm.
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Table 2: Real data: U.S. family income data

U.S. Family Income Data in 1970
MLE RWMH TaRBMH

Mean 95%CI IF Mean 95%CI IF
a 4.797 4.734 4.673 4.794 6449.905 4.818 4.391 5.259 67.085
b 44.29 44.121 43.641 44.632 6065.901 44.213 42.992 45.607 49.977
c 0.997 0.996 0.994 0.997 5985.317 0.997 0.995 0.999 3.951
p 0.316 0.322 0.315 0.329 4989.927 0.316 0.286 0.350 65.848
q 0.695 0.701 0.685 0.715 4411.731 0.695 0.603 0.805 66.966

U.S. Family Income Data in 1975
MLE RWMH TaRBMH

Mean 95%CI IF Mean 95%CI IF
a 2.887 2.935 2.715 3.161 81.357 2.944 2.689 3.185 85.644
b 54.87 54.767 52.260 57.567 89.930 54.686 52.120 57.898 76.089
c 1.000 0.996 0.988 1.000 11.589 0.996 0.988 1.000 5.753
p 0.561 0.551 0.501 0.605 87.320 0.549 0.497 0.612 82.158
q 1.587 1.573 1.356 1.823 92.656 1.564 1.338 1.860 85.611

U.S. Family Income Data in 1980
MLE RWMH TaRBMH

Mean 95%CI IF Mean 95%CI IF
a 2.587 2.776 2.558 3.016 276.391 2.807 2.559 3.051 93.655
b 64.48 59.148 54.687 64.175 153.673 58.643 54.202 64.140 81.448
c 1.000 0.977 0.958 0.997 25.167 0.977 0.958 0.997 17.206
p 0.599 0.554 0.501 0.610 247.684 0.547 0.494 0.610 90.075
q 1.961 1.589 1.285 1.948 185.164 1.551 1.253 1.943 91.084

U.S. Family Income Data in 1985
MLE RWMH TaRBMH

Mean 95%CI IF Mean 95%CI IF
a 2.498 2.753 2.524 3.009 2432.152 2.747 2.503 3.009 86.002
b 66.06 58.317 54.192 63.100 1292.948 58.421 53.942 63.615 80.575
c 1.000 0.978 0.961 0.997 177.366 0.978 0.961 0.997 20.545
p 0.578 0.520 0.466 0.576 2199.231 0.522 0.468 0.581 79.589
q 1.793 1.330 1.088 1.618 1656.529 1.337 1.070 1.657 88.151

U.S. Family Income Data in 1990
MLE RWMH TaRBMH

Mean 95%CI IF Mean 95%CI IF
a 2.731 3.055 2.799 3.324 1945.881 3.086 2.797 3.373 103.874
b 62.19 54.885 51.629 58.954 1116.695 54.524 51.176 58.917 92.802
c 1.000 0.978 0.967 0.993 122.056 0.977 0.966 0.992 13.945
p 0.519 0.460 0.416 0.508 1803.985 0.455 0.411 0.508 103.749
q 1.358 0.980 0.817 1.192 1458.683 0.960 0.794 1.192 111.004

Note: MLE estimates are based on the results from Bordley et al. (1996). The acceptance
rates are as follows: around 50% in the RWMH algorithm every year, around 70% in the
TaRBMH in 1975, and around 90% in the TaRBMH algorithm in other years.
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Table 3: Gini coefficients for U.S. data

Year Mean 95%CI
1970 0.341 0.337 0.345
1975 0.349 0.346 0.352
1980 0.357 0.354 0.360
1985 0.379 0.375 0.384
1990 0.382 0.376 0.389

Table 4: Real data: Family Income and Expenditure Survey in Japan in 2009

Quintile Decile
Mean 95%CI IF Mean 95%CI IF

a 2.794 1.584 5.370 448.561 2.136 1.347 3.122 401.557
b 0.635 0.454 0.817 63.685 0.509 0.350 0.669 110.153
c 0.951 0.889 0.996 146.477 0.933 0.894 0.960 214.113
p 1.701 0.553 3.608 534.857 2.895 1.359 5.884 409.815
q 1.569 0.466 3.863 409.743 1.720 0.855 3.647 278.706

Note: The acceptance rates are as follows: around 20% in the RWMH algorithm, and
around 80% in the TaRBMH one.

Table 5: Gini coefficients for Japan data

Quintile Decile
Mean 95%CI Mean 95%CI
0.247 0.224 0.265 0.243 0.235 0.251
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Figure 1: Quintile Data
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Figure 2: Sampling results from simulated data: A time-series plots of draws from the posterior and corre-
sponding auto-correlation functions using the TaRBMH (top panel) and the RWMH (bottom panel)
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Figure 3: Joint posterior distributions from simulated data
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Figure 5: The trends of the U.S. Gini coefficients
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