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Abstract

Airports and governments pursue control of the negative externalities from aircraft opera-

tions, such as noise and local air pollutants, through environmental regulations (e.g., charging

or limiting). While such environmental regulations at an airport can improve the environmental

performance at that airport, they may distort aircraft allocation and compromise the overall

performance of the airport system. This paper proposes an approach based on environmental

efficiency values measured by data envelopment analysis to assess this potential. Specifically,

we estimate the environmental efficiency by employing measures of negative externalities that

capture the aircraft’s performance. We then regress the efficiency values on airport characteris-

tics that indicate whether the airport should be eco-efficient. We apply the proposed approach

to Japanese airport data. Our results suggest that the allocation of aircraft in Japan is not

distorted in terms of negative externalities and that environmental regulations at airports in

Japan may be justified.
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1 Introduction

Civil aviation is one of the fastest-growing industries in the global economy. As the industry

grows, so does public concern about the environmental impacts of aircraft operations or negative

externalities in the aviation industry. Two important negative externalities in airport areas are

noise and local air pollutants. Since it is essential to understand the magnitude and properties of

these environmental impacts to develop and evaluate an environmental policy, several studies have

estimated the social cost of transport (Nelson, 1980; Schipper, 2004; Dings et al., 2003; Bickel and

Friedrich, 2005; INFRAS/IWW, 2004; Lu and Morrell, 2006; Lu, 2009).

As manufacturers have developed new aircraft and engines with new technologies, the negative

externalities per aircraft have gradually decreased; however, not all aircraft have the latest technol-

ogy, implying that aircraft in use today have a variety of emission capabilities. To control negative

externalities in airport areas, airports and governments have introduced environmental regulations

(e.g., charging for these externalities or limiting operations by aircraft that do not conform to their

standards) to encourage environmentally friendly decisions by airlines. For example, the European

Commission approved the “Environmental Noise Directive,” which requires member states to pro-

duce noise maps and action plans at major airports every five years. As a result, noise performance

at major European airports has improved from 2006 to 2011 (Voltes-Dorta and Martín, 2016).

In Japan, the Ministry of Land, Infrastructure, Transport, and Tourism (MLIT) proposed a

guideline for environmentally friendly airports (Eco-Airport Guidelines) in 2003. Based on these

guidelines, each airport (including private airports) has set up a committee (Eco-Airport committee)

comprising the airport, airlines serving that airport, and local governments in that area, and each

committee has its plan for airport environmental improvement. Consequently, cases exist where

some airports have adopted an environmental regulation scheme while other airports have not. For

example, Itami Airport (ITM) introduced a strict noise charge, Haneda Airport (HND) adopted a

moderate noise charge, and Kansai International Airport (KIX) has not imposed a noise charge.

Implementing environmental regulations at an airport can improve its environmental perfor-

mance, which is desirable for society; however, it may have unintended effects of compromising
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the environmental performance at other airports and distorting the overall performance of the air-

port system. Specifically, airlines may reallocate aircraft with poor environmental performance

(i.e., noisy and high-emission aircraft) to airports with no or weak regulations to concentrate air-

craft with good environmental performance to airports with strict regulations, resulting in worse

environmental performance at airports with no or weak regulations.

The economics literature has studied these unintended effects of introducing environmental

regulations. For example, empirical evidence shows that the US Clean Air Act and its amendments

from 1970 have caused a relocation of polluting industries due to non-uniformity in regulatory

intensity among US counties (Becker and Henderson, 2000).1 Tanaka et al. (2022) refer to these

unintended effects of environmental regulation as “displacement effects.”2

To determine if an unintended effect arises in airport systems where environmental regulations

have been introduced, we observe aircraft allocation due to environmental regulations at airports.

For example, in Japan, Narita Airport (NRT) is located in the suburbs of the Tokyo metropolitan

area and has limited its opening hours due to opposition from residents over noise concerns. As a

result, some airlines have reallocated their aircraft to Haneda Airport (HND), which has fewer noise

concerns due to its coastal location (Dobruszkes et al., 2021). Additionally, Itami Airport (ITM) is

located in the center of theOsakametropolitan area and has limited the use of jet aircraft to about half

of its slots (200/370 times per day) for noise control.3 Consequently, some routes from ItamiAirport

(ITM) have been reallocated to depart from the nearby Kansai International Airport (KIX) or Kobe
1Becker and Henderson (2000) and Hanna (2010) study the effect of the Clean Air Act and its amendments from

1970 in the US. Becker and Henderson (2000) find relocation of polluting industries across regions within the US, and
Hanna (2010) shows that the amendments caused regulated multinational firms to increase their foreign output. Chung
(2014) examines the pattern of foreign direct investment (FDI) of Korean companies, showing that foreign countries
with weak environmental regulations attract more FDI in polluting industries than in non-polluting industries. Tanaka
et al. (2022) document the impacts of tightening the US air quality standard for lead in 2009. Specifically, they show
the relocation of recycling activities of used lead acid batteries from the United States to Mexico, where the air quality
standard for lead remained stable after 2009. More empirical evidence is presented by Copeland and Taylor (2004)
and Dechezleprêtre and Sato (2017).

2The economic literature has focused on the reallocation and relocation itself caused by environmental regulation.
When we use the term unintended effects of environmental regulation, it includes not only the reallocation itself but
also the negative effects of the environmental regulation at an airport on the other airport and airport system caused by
the aircraft reallocation.

3In recent years, Itami Airport (ITM) has gradually relaxed the regulation and expanded the slots available for jet
aircraft with low-noise. From 2012 to 2015, 85 propeller aircraft slots were progressively replaced by low-noise jets.
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Airport (UKB). We must ask if such aircraft allocation resulting from environmental regulations

can unintentionally affect and distort the airport system’s overall environmental performance.

This paper investigates the potential for unintended effects in a national airport system. Specif-

ically, we first employ the data envelopment analysis (DEA) approach to assess environmental

efficiency. We then apply the efficiency as a dependent variable in the second-stage regression

analysis to examine whether the aircraft allocation is distorted. To assess the environmental effi-

ciency, we implement measures of two negative externalities (i.e., noise and local air pollutants)

into the DEA model as undesirable outputs of airport production activities. While previous stud-

ies have proposed some methods of measuring negative externalities, we follow Grampella et al.

(2017). Furthermore, since we implement undesirable outputs into the DEA model, we utilize the

directional distance function (DDF) approach, allowing us to measure the distance between the

frontier of a production possibility set and a point in the set with an arbitrary direction. Specific

properties of the negative externality measures and the use of DDF enable us to identify airports

where aircraft with high noise and high emissions operate as inefficient ones in the DEA, as detailed

in subsection 3.2.3.

Next, to examine whether the aircraft allocation is distorted, we propose to regress the effi-

ciency values on airport characteristics that indicate whether the airport should be environmentally

efficient. We then observe whether the coefficient has an appropriate sign. Specifically, we focus on

the two airport characteristics: airport operating hours and offshore airport. Since aircraft noise is

considered to have a more significant impact on human health at nighttime than daytime, we expect

airports with longer operating hours to operate aircraft with lower noise. We also conjecture that

the negative impacts on human health of operating eco-inefficient aircraft at offshore airports are

smaller than at other land-based airports because of the small population in their vicinity. Suppose

environmental regulations at airports distort airlines’ incentives, causing them to relocate eco-

inefficient aircraft to airports with no or relatively weak regulations. In that case, the coefficients

from the second-stage regression might demonstrate an unintended sign (e.g., offshore airports

positively affect efficiency).
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We apply our approach to a study of aircraft allocation in the Japanese aviation market, utilizing

data from 23 major Japanese airports for 2017–2019. The data is appropriate for our analysis

because it has within-sample variation in operating hours and includes four of the few offshore

airportsworldwide. We show that airportswith longer operating hours have higher efficiency values,

while offshore airports have lower efficiency values. Our results suggest no distortion in aircraft

allocation in Japan regarding negative externalities. Furthermore, environmental regulations at

airports in Japan may be justified.

The remainder of this paper is organized as follows. Section 2 summarizes the literature with

particular attention to airport efficiency measurement studies with undesirable outputs to clarify

the differences between this paper and previous studies. Section 3 describes our methodology, and

Section 4 presents the data employed in our analysis. Section 5 shows the estimation results, and

Section 6 concludes the paper and identifies topics for future research.

2 Literature Review

This paper’s contribution relates to previous studies that measure airport efficiency with undesirable

outputs. Most typically conduct a second-stage regression analysis to investigate the relationship

between airport characteristics and measured efficiencies. This stream of literature is commonly

interested in the difference in results with and without considering undesirable outputs.

Yu (2004) andYu et al. (2008)measure the efficiency of Taiwan’s airportswith andwithout noise

fees as an undesirable output. The latter investigates the annual productivity growth in Taiwan’s

airports using the Malmquist index and shows that ignoring the noise in efficiency measurement

generates seriously biased growth rates. Pathomsiri et al. (2008) incorporate the number of delayed

flights in their efficiency measurement of 56 US airports as an undesirable output. Their finding

is that small and less congested airports are efficient when considering the delay, but it is not the

case when ignoring it. Martini et al. (2013) and Scotti et al. (2014) consider several undesirable

outputs generated by airports’ production activity: noise and local air pollutants for the former and
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in addition to the two variables, delay for the latter. Both studies conduct a second-stage regression

analysis to estimate the impact of various airports’ characteristics on efficiency and thereby stress

that the impacts change depending on whether efficiency scores are estimated with or without

undesirable outputs. Fan et al. (2014) employ a DEA model with flight delays as an undesirable

output for considering the quality of airport operation since flight delays seem to be one of the

primary sources of customer complaints in China.4

For the following reasons, these previous studies have focused on the difference in results

with and without considering undesirable outputs. First, ignoring undesirable outputs may lead

to an unreasonable evaluation of airport efficiency. For example, suppose aircraft delays are not

incorporated into the evaluation. In that case, the efficiency of congested airports (i.e., low-quality

airports) may be overestimated since high production may be achieved because of the expense

of quality rather than high efficiency. Second, biased efficiency could lead to biased effects in

a second-stage regression. The benchmarking literature has investigated what factors contribute

to an efficient airport, that is, efficiency drivers. The efficiency drivers presented by previous

studies—derived from measured efficiency ignoring undesirable outputs—may not be appropriate.

Therefore, it should provide implications for airport policy development to confirm whether the

empirical findings in the literature are robust by comparing the efficiencies with and without

undesirable outputs.

Rather than comparing the results with and without undesirable outputs, Voltes-Dorta and

Martín (2016) show the improvement in noise efficiency in representativeEuropean airports between

2006 and 2011. Their choice of noise measure (55 dB Lden contour area) reflects noise abatement

procedures conducted in airports, such as preferential runways or runway split. The improvement

result shows that environmental regulations effectively reduce the noise produced at major airports

in the EU. They also conduct a second-stage analysis of the relationship between noise abatement

procedures and noise efficiency. Our study shares a common methodology with the literature, but

the objective differs significantly; we explore the allocation of aircraft in a national airport system
4Traditional efficiency measurement with desirable output cannot capture the quality of the airports’ service. This

is also pointed out in Scotti et al. (2014).
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as a whole rather than potential determinants of efficiency.

This paper is also related to previous studies on measuring the efficiency of Japanese airports.

Yoshida and Fujimoto (2004) explore the possibility of overinvestment by regressing the efficiency

on a dummy variable representing airports suspected of being constructed for political reasons.

Yoshida (2004) shows lower efficiency at regional airports in Japan. Additionally, Barros et al.

(2010) estimate the productivity growth of Japanese airports in 1987–2005. Ha et al. (2013)

find an inverse U-shaped relationship between airport efficiency and downstream airlines’ market

concentration with a sample of eleven major airports in Northeast Asia, including four Japanese

airports. Recently, Liu et al. (2021) explored the impact of competition between air and high-speed

rail on the efficiency of Japanese airports.5 None of these studies consider any undesirable output

for efficiency measurement for Japanese airports; to the best of our knowledge, this paper is the

first attempt to measure the efficiency of Japanese airports with undesirable outputs.

The literature review shows that the contribution of this paper is two-fold. This paper is the

first study to propose that environmental efficiency can be applied to evaluating aircraft allocation.

This research is also the first to estimate the efficiency of Japanese airports, considering undesirable

outputs (noise and local air pollutants).

3 Methodology

This section introduces a method to investigate the distortion in aircraft allocation in a national

airport system. First, we estimate airport efficiency using DEA, a nonparametric technique for

efficiency measurement, where the two negative externalities of noise and local air pollutants are

implemented into the DEA model as by-products of airport production activity, i.e., undesirable

outputs.6 This paper refers to the efficiency measured with undesirable outputs as environmental
5Oum et al. (2013) and Ha et al. (2017) estimate social efficiency (i.e., efficiency with CO2 emission as an

undesirable output) for Japanese airlines, rather than Japanese airports.
6Another approach to model negative externalities in a DEA model is to deal with these as bad inputs. This

approach is discussed in Liu et al. (2010); however, we are unaware of this approach in the airport benchmarking
literature.
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efficiency. More specifically, we follow Färe et al. (1989); Chung et al. (1997); Färe et al. (2007)

to incorporate undesirable output in the DEA efficiency measurement. We assume weak dispos-

ability for undesirable outputs and use the DDF to measure efficiency. Second, a Tobit model is

estimated where the measured environmental efficiency is the dependent variable. Interpreting the

environmental efficiency and the regression coefficients relies heavily on the measure of negative

externalities; therefore, it is explained after the description of the measure.

3.1 Efficiency measurement and second-stage regression analysis

DEA is a method of measuring efficiency by constructing a production possibility set (PPS) from

the production data of several decision-making units (DMUs) (i.e., airports) and measuring the

distance between the production point of each DMU and that set’s frontier.

The first step of the approach is to define the PPS. Let G ∈ R#
+ be a vector of # inputs, H ∈ R"

+

be a vector of " desirable outputs, and 1 ∈ R �
+ be a vector of � undesirable outputs. The PPS is

given by:

%(G) = {(H, 1) ∈ R"+�
+ | G can produce (H, 1)}, G ∈ R#

+ .

The set collects all the combinations of H and 1 that can be produced from a specific input vector

G. To characterize the production technology with undesirable outputs well, the PPS should satisfy

the following six axioms suggested by Färe et al. (1989).

1. Inactivity: (0, 0) ∈ %(G),∀G ∈ '#+ . It is possible to produce nothing with any inputs.

2. Compactness: %(G) is a compact set. Only a finite production is possible for both desirable

and undesirable outputs.

3. Strong disposability of inputs: G′ ≤ G ⇒ %(G′) ⊂ %(G). DMUs can produce the same

amount of outputs with more inputs.
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4. Weak disposability of outputs: (H, 1) ∈ %(G) and \ ∈ [0, 1] ⇒ (\H, \1) ∈ %(G). Given any

inputs, a proportional reduction in both desirable and undesirable outputs is feasible.

5. Strong disposability of desirable outputs: (H, 1) ∈ %(G) and H′ ≤ H ⇒ (H′, 1) ∈ %(G).

DMUs can produce a less amount of desirable outputs with the same inputs.

6. Null jointness: (H, 1) ∈ %(G) and 1 = 0 ⇒ H = 0. When a positive amount of desirable

outputs are produced for any inputs, a positive amount of undesirable outputs are also

produced.

Axiom 1, 2, and 3 are standard for DEA. Färe et al. (1989) explain the standard axiom of strong

disposability of outputs, (H, 1) ∈ %(G) and (H′, 1′) ≤ (H, 1) ⇒ (H′, 1′) ∈ %(G), is not necessarily

appropriate with the presence of undesirable outputs. Therefore, we assume weak disposability of

outputs (axiom 4) with strong disposability of desirable outputs (axiom 5).

When undesirable output occurs, the standard output-oriented DEAmeasure—which considers

the maximum proportional expansion of outputs—is invalid since the undesirable output should

be reduced. To allow the contraction of undesirable outputs, Chung et al. (1997) propose an

output-oriented DDF, defined by:

� (G, H, 1; 6H, 61) = max{V ≥ 0 : (H, 1) + V(6H, 61) ∈ %(G)},

where (6H, 61) ∈ R"+� is a directional vector that allows the measurement of the distance between

the point in the PPS and the frontier in any pre-specified direction. Fig. 1 illustrates how the DDF

measures the distance. The figure illustrates one desirable output and one undesirable output. The

area bounded by the curved line and the horizontal axes is the PPS, and point A:(H, 1) is a production

point of the evaluatedDMU.When 6H is positive, and 61 is negative, (H, 1)+V(6H, 61) also represents

a production point where the desirable output increases and the undesirable output decreases from

the original production point (H, 1). When V > 0 takes a small value, (H, 1) + V(6H, 61) is feasible.

As V grows, (H, 1) + V(6H, 61) goes out of the PPS. Therefore, the DDF measures the feasible

simultaneous expansion of desirable outputs and contraction of undesirable goods from (H, 1)
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given the directional vector of (6H, 61). When (H, 1) evaluated is on the frontier, the DDF is equal

to 0, and the DMU is evaluated as efficient. Furthermore, when (H, 1) is an inner point of the set,

the DDF takes a positive value, and the DMU is evaluated as inefficient. For the inefficient DMU,

there is room to become more efficient by increasing desirable outputs and decreasing undesirable

outputs.

A

b

y

g

gb

gy

A + βgy (desirable)

b (undesirable)

PPS

Figure 1: Production Possibility Set and Directional Distance Function

The researcher should specify the directional vector. This paper sets (6H, 61) = (H,−1), where

(H,−1) is the outputs produced by evaluated DMU. In other words, we set different directional

vectors for each DMU. This directional vector allows scale-free comparison among the estimated

efficiency of eachDMUbecause theDDF solveswhat proportions of original desirable (undesirable)

outputs to be increased (decreased) to reach the frontier (Scotti et al., 2014). The environmental

efficiency denoted by \: is estimated by calculating the DDF for all the DMUs. More specifically,
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we solve the following linear programming for DMU : ∈ {1, 2, ...,  }:

\: ≡ � (G: ,H: , 1: ; H: ,−1: ) = max
V,_

V

s.t ._ ≥ (1 + V)H: ,

�_ = (1 − V)1: ,

-_ ≤ G: ,

_ ≥ 0,

(1)

where - = [G1, ..., G ] denote # ×  input matrix, . = [H1, ..., H ] denote " ×  desirable output

matrix, � = [11, ..., 1 ] denote � ×  undesirable output matrix, and _ ∈ ' + is a weight. We use

subscript : to denote a specific DMU.7 The constraints of Eq. (1) require that a production point

(H + VH, 1 − V1) is in the PPS that is consistent with the six axioms above and derived from the

production data of  DMU.

Eq. (1) indicates that we adopt the constant returns to scale (CRS) assumption concerning

production technology, which is in line with previous studies using data from Japanese airports

(Yoshida and Fujimoto, 2004; Yoshida, 2004; Barros et al., 2010). No consensus exists on whether

to assume constant or variable returns to scale (VRS) assumptions concerning airport production

activities, especially when considering negative externalities. Yoshida and Fujimoto (2004) com-

pared the results of the CRS assumption with those of the VRS assumption and identified airports

with misleading efficiency values under the VRS assumption. Therefore, we believe the CRS

assumption is appropriate for the data of Japanese airports.

After obtaining the efficiency value, we conduct a second-stage analysis using a Tobit regression

model of the following form:

\∗: = I
)
: V + n: , \: =


\∗
:
if \: > 0

0 otherwise,
(2)

7When there is no refusal, a vector is a column vector.
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where \∗
:
is the latent efficiency value, \ is the efficiency measured with the DDF, and I: is the

independent variables. n: is a normally distributed error term, n: ∼ # (0, f2). The independent

variables I: include potential determinants of efficiency and the variables for investigating aircraft

allocation. The interpretation of the coefficient V is related to the negative externalities measure,

which we explain in the last part of this section.

3.2 Measure of negative externalities

We require ameasure of noise and local air pollutants to implement the two as undesirable outputs of

the DEA model; noise and pollutants are not traded on the market or observed directly. Grampella

et al. (2017) develop a measure of the two negative externalities: the environmental effect. They use

type certification data of aircraft and engines and refer to the external cost literature; the approach

calculates a monetary evaluation of externalities produced from an aircraft operation during the

landing and takeoff (LTO) cycle for a specific aircraft engine combination. By aggregating the

monetary evaluation regarding the number of aircraft operations at an airport in a year, the airport-

year-level measure of externalities (i.e., the environmental effect) is calculated. Although they

circumvent using the term “cost” to represent the measure, we use it because it is in monetized

value; however, it is important to note that this measure does not correspond to the external costs

incurred by noise and local air pollutants.8

3.2.1 Noise measure at the airport levels

The level of noise produced from aircraft operation differs between aircraft due to variances in

their maximum takeoff weight, engine, or generation date of the aircraft model.9 In other words,
8External costs are those incurred by residents near an airport; therefore, their estimation requires consideration

of the population near the airport, its density, or even the land prices around the airport. In this sense, our measure of
externalities is monetary units but not external costs. See Section 3.2.3 for more details on this distinction.

9The generation date of the aircraft model affects noise performance due to the improvement of technology and
the noise regulation of the aircraft. The International Civil Aviation Organization (ICAO) has gradually tightened its
aircraft noise standards by adopting new chapters in Annex 16, Volume I of the Convention on International Civil
Aviation. Each country has enacted laws that conform to these standards, and type certification is granted to aircraft
that meet the standards. The first ICAO noise standards were established in 1971, and the standards are shown in
Chapter 2. In 1976, Chapter 3 standards were adopted, requiring the effective perceived noise level to be measured at
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heterogeneity exists in the noise emission performance between aircraft. The first step of airport

noise measurement is to obtain the aircraft level noise data.

The European Aviation Safety Association (EASA) provides data on the noise levels of different

aircraft models measured at the time of type certification. Obtaining a type certificate is necessary

for manufacturing an aircraft; this data covers noise performance data on aircraft operated in the

civil aviation industry. During type certification, the noise level generated by an aircraft during

the LTO cycle is measured in terms of the effective perceived noise level (EPNL)at three points:

lateral, flyover, and approach. Considering these three measurement points, the following equation

can calculate the average noise level of an aircraft:

Aircraft_Noise8 = 10 × log10(
1
3

∑
@

10
�%# !8@

10 ), (3)

where �%#!8@ represent the certified values of an specific aircraft model 8 at the reference point

@ ∈ {Lateral, Flyover,Approach}. Aircraft_Noise8 represents the energetic mean of the 3 certified

values of an aircraft model 8.

The next step is to obtain a monetary evaluation of noise produced from a single flight for

all aircraft models. Schipper (2004) estimates the average external cost of noise per flight to be

324 euros (EUR) for a sample of 38 representative European airports. Grampella et al. (2017)

found that the average aircraft noise level calculated by Eq. (3) was 95.3 dB in 31 Italian airports.

They assigned 324 EUR for a single flight of an aircraft with a noise level of 95.3 dB, referring

to the results of Schipper (2004). Furthermore, an increase (decrease) of 3 dB means the noise

exposure10 doubles (is halved). Therefore, using 95.3 dB and 324 EUR as reference values, the

following formula provides the monetary evaluation per flight with an arbitrary noise level:

Monetary_Aircraft_Noise8 = 2
Aircraft_Noise8−95.3

3 × 324. (4)

three points below the standard. The new standards of Chapters 4 and 14 were adopted in 2002 and 2013, respectively.
The two chapters require that the cumulative noise level, defined as the sum of noise levels at three measurement points,
is below the cumulative noise level Chapter 3 permits by 10 and 17 EPNdB, respectively.

10The unit dB is the logarithmic relative one.
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Lastly, by summing the monetary evaluation in Eq. (4) over the number of aircraft movements of

each aircraft, the airport-year-level noise measure at the airport : , "�#:11, is calculated as:

"�#: =
∑
8∈�:
Monetary_Aircraft_Noise8 × �)":8, (5)

where �: represents the set of aircraft models operated at the airport : , and �)":8 is the number

of flights (departures and arrivals) of aircraft 8 at the airport : in a year. Following Grampella et al.

(2017), only departure flights are considered for calculation.12

3.2.2 Local Air pollutants measure at the airport levels

The measure of local air pollution is calculated similarly to the noise measurements. Since air

pollutants are emitted from aircraft engines, the first step in measurement is to identify the volume

of pollutants emitted per LTO cycle for aircraft equipped with various types of engines.

As is the case for noise, the method of Grampella et al. (2017) uses type certificate data

to identify the emission performance of engines. ICAO Aircraft Engine Emission Databank,

compiled by EASA, provides certified data on the exhaust emissions of production aircraft engines.

The certified data are provided according to the ICAO LTO cycle model. The model divides an

LTO cycle into four phases: (i) takeoff, (ii) climb-out, (iii) approach, and (iv) idle. Emission factors

(i.e., the volume of pollutants produced when an engine consumes a unit of fuel) for pollutants

subject to regulation and fuel consumption are provided for each phase of an LTO cycle. Using

these data, the amount of pollutant ? emitted in an LTO cycle from an engine model 9 , denoted by
11"�# is the abbreviation of monetary averaged noise.
12Grampella et al. (2017) consider only the movements related to takeoffs in Eq. (4) (see footnote 24 on p. 335 of

their paper). In other words, they assign 0 costs to arrival flights “to avoid double counting.” This operation may have
underestimated the noise cost "�# by half. Since Schipper (2004) estimated the unit costs per aircraft movement at
the airport, we believe this operation may be unnecessary. The number of aircraft movements at an airport includes
departure and arrival flights; however, this paper follows Grampella et al. (2017) to compare the results. Since this
operation reduces the noise costs of the “all airports” by almost half, it does not affect the efficiency values and
regression results because DEA analyzes the relative efficiency of the airport. Since this operation changes the ratio of
noise cost to local air pollutants cost, the results could change when analyzing the sum of these two externalities.
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&�
9 ?
is calculated as:

&�
9 ? =

∑
5

� 9 ? 5 × 3 5 × �� 9 5 .

where � 9 ? 5 represents the emission factor of engine model 9 for pollutant ? during phase 5 ∈

{takeoff, climb-out, approach, and idle}. 3 5 represents duration time, and �� 9 5 represent fuel

consumption per second. This study targets several local air pollutants: hydrocarbons (HC),

nitrogen oxides (NOx), sulfur dioxide (SO2), and suspended particulate matter (PM10).13 Emission

factors and fuel consumption are sourced from engine certification data.14 We assume that the

duration times are the same for all engines (or all flights), lasting 0.7 minutes for (i) takeoff phase,

2.2minutes for (ii) climb-out phase, 4minutes for (iii) approach phase, and 26minutes for (iv) idle

phase according to the definition of the ICAO LTO cycle model.

Since aircraft have several engines, the volume of pollutants emitted per LTO cycle is derived

from the following equation:

&8 9 ? = =8 9 ×&�
9 ?

where &8 9 ? is the amount of pollutant ? ∈ {HC,NOx, SO2, PM10}emitted in an LTO cycle from

aircraft 8 equipped with the engine model 9 . =8 9 is the aircraft’s number of engines.

The next step is determining how air pollutants emitted at airports are evaluated in monetary

terms. Dings et al. (2003) surveyed and integrated several European external cost studies, revealing

the external unit costs of the four pollutants. They show that the unit costs of HC,NOx, SO2, PM10

are 4, 9, 6, and 150 EUR per kg of pollutants, respectively. Using these unit costs, the airport-year-

level measure of local air pollutants in an airport : , !�%: , is calculated as follows:

!�%: =
∑
?

�? ×
∑
8 9

&8 9 ? × �)"8 9 ℎ, (6)

13CO2 has a global environmental impact that is not limited to an airport’s surroundings; therefore, CO2 is beyond
the scope of our analysis.

14The emission factors for SO2 and PM10 are not available for each engine because they are not subject to regulation
in the type certificate. Therefore, we set � 9 ,SO2 , 5 = 0.8(g/kg) and � 9 ,PM10 , 5 = 0.2(g/kg) for all engine models 9 and
phase 5 .
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where �? is the unit cost of pollutants ? sourced from Dings et al. (2003). �)"8 9 ℎ is the number

of flights of aircraft 8 equipped with the engine model 9 at airport : . &8 9 ? contains the volume of

pollutants emitted in all phases of the LTO cycle, that is, both departures and arrivals; therefore, to

avoid double counting, we assume that no externality is produced when an aircraft arrives.

We require each airport’s type certification data and flight-level aircraft operations data to

construct the two negative externality measures. We utilize three sources: (i) the Cirium database,

(ii) EASA Certification Noise level data, which we call the noise certification data,15, and (iii)

ICAO Aircraft Engine Emission Databank, which we call the engine emission certificate data.16

The first source provides flight-level data, including origin and destination airports, aircraft

type and maximum takeoff weight (MTOW) used on the flight, and the name and number of the

engine equipped. The second source provides certification data at the aircraft type level, including

the aircraft type name, the MTOW of that aircraft, and its certified noise level in EPNLdB at the

three measurement points. The Cirium database and noise certification data are combined using

the aircraft type name and MTOW as keys. Specifically, for each combination of the aircraft type

name and MTOW in the Cirium database, records with the same name and MTOW within ±3%

are retrieved from the noise certification database. There are several candidate records in the

noise certification data; thus, we associate the record that gives the median noise cost among the

candidates. The third source provides certification data at the engine type level, including engine

name, pollutant emission factor, and fuel consumption per unit of time. The emission factor and

fuel consumption are certified in the four phases of the ICAO LTO cycle model. The Cirium

database and engine emission certification data are combined using the engine name as the key.

If several candidate records exist for the joining operation, we select the record that provides the

median cost.
15https://www.easa.europa.eu/domains/environment/easa-certification-noise-levels
16https://www.easa.europa.eu/domains/environment/icao-aircraft engine-emissions-databank
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3.2.3 The negative externality measure and the interpretations of the efficiency and the

second-stage regression coefficients

We interpret an airport’s environmental efficiency as an indicator of its operating aircraft’s envi-

ronmental efficiency. In other words, we identify airports with noisy and high-emission aircraft

as inefficient airports in DEA. Such an interpretation is possible because of the two measures of

negative externalities in Eqs. (5) and (6) have the following two properties. First, as the calculation

reveals, the measures reflect the emission performance of all the aircraft operating at that airport.

Suppose an airport operates noisy and high-emission aircraft. In that case, the negative externality

measure of that airport takes a significant value, and the airport is evaluated as inefficient as long

as the other condition, i.e., desirable outputs and inputs, are the same. Second, the measures do

not reflect airport characteristics other than aircraft emission performance, such as the population

surrounding the airport.

Why the two properties enable the interpretation of environmental efficiency can be clarified by

analyzing ameasure that does not meet the two properties, such as “external cost,” and the efficiency

estimated with that measure. Specifically, the external costs of noise and local air pollutants do not

satisfy the second property because the estimation methods reflect the population surrounding the

airport.

Previous studies have estimated the external noise costs generated around airports. These

studies typically use hedonic pricing methods, where a parameter called the noise depreciation

index (NDI), which represents the change in a given property value associated with a decibel

change in noise exposure, is estimated by regressing housing prices or rents on a noise measure

(Schipper et al., 1998). Using the NDI, the external cost generated at an airport is calculated,

following Lu and Morrell (2006), as follows:

∑
8

#�� × % × (#8 − #>) × �8, (7)

where #8 represents a noise level at point 8 around the airport. #> represents a background noise
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level, % represent average house rent around the airport, and �8 represents the number of residences

at point 8.

The estimation formula for the external noise cost in Eq. (7) reveals that the external costs

satisfy the first property expected as a measure of externalities but not the second. To represent

the level of noise exposure, #8 in Eq. (7), we use noise measures, such as the noise exposure

forecast (NEF) or the day-evening-night noise level (Lden). The calculation of NEF and Lden uses

EPNL—representing the noise emission performance of an aircraft—and operating data to evaluate

a noise exposure for a longer period (e.g., 1 day).17 In other words, the noise measure and the

external cost are a function of the noise performance of the operating aircraft and satisfy the first

property; however, the second property is not satisfied by the external cost. The calculation reflects

how people around the airport evaluate noise nuisance through NDI and the population around the

airport.

The population is also considered for the external cost of local air pollution. The ExternE

projects, (Bickel and Friedrich, 2005), whose methods and results are cited as the most important

study of external cost estimation projects, use the impact pathway approach. In this approach, a

detailed model is constructed where the emitted pollutants are suspended in the air, and diffused to

various areas, causing health hazards for humans. This method calculates the number of specific

health hazards in each area where pollutants are dispersed so that the number of hazards is greater

in densely populated areas, and the external costs are also more considerable.

Both calculations of the external cost of noise and local air pollutants consider the population’s

number (or density) around the airport and do not satisfy the second property. This characteristic

bothers our interpretation of airport environmental efficiency, which can be clarified by considering

hypothetical examples of two airports. Let the two airports have the same airport facility, be operated

by the same type of aircraft fleet mix, and produce the same outputs in aircraft movements and the

number of passengers; however, the two have different populations around each vicinity. When we

use the external costs as undesirable outputs of the DEA model in this situation, the airport with
17Since EPNL measured in type certification process evaluates a noise exposure for a short period, it represents the

aircraft’s noise performance.
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a larger population would be evaluated as inefficient since it has a higher external cost. Our study

identifies airports as inefficient due to their failure to attract less noise-generating and low-emission

aircraft. The example shows the inappropriateness of using the external cost. If we employ the

negative externality measure in Eqs. (5) and (6), the two airports have the same efficiency value

since the two have the same aircraft. The DDFwith certification-based negative externality measure

can identify inefficient airports when the airport is served by environmentally inefficient aircraft.

Similar to the reasoning above, noise contour data is not appropriate as a noise measure for

our study. Voltes-Dorta and Martín (2016) use the area of 55 dB noise contour data—compiled

as a result of “Environmental Noise Directive” in Europe—for their noise efficiency measurement.

The area is affected by the fleet mix operated in the airport and other restrictions not related to

the fleet mix. A preferential runway is an example. If an airport introduces a preferential runway,

aircraft should circumvent densely populated areas, allowing the aircraft to take a long way around

and deduce a wider area of noise contour. In particular, Voltes-Dorta and Martín (2016) show in

their second-stage analysis that the preferential runway negatively impacts efficiency, which implies

a broader area of noise contour. Our study is related to the airline’s choice of aircraft, and this

measure is also inappropriate.

Lastly, we caveat the interpretation of the regression analysis. The regression model in Eq. (2)

has a variable to detect distortion in aircraft allocation. Because the environmental efficiency of an

airport captures the emission performance of operating aircraft, a positive impact corresponds to

the use of high-emission performance aircraft. Regressing the efficiency on variables that indicate

whether the airport should be eco-efficient, we try to detect distortion in aircraft allocation in a

national airport system; however, the regression results have only a screening role. In other words,

if environmental regulations caused a significant distortion in aircraft allocation, the regression

coefficients would display an unintended sign, e.g., the longer operating time airport has low-

efficiency values; however, the absence of an unintended sign does not mean the absence of

distortion. In other words, a weak distortion does not change the regression coefficient to the

unintended sign. In this sense, regression is only screening.
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4 Variables and data sources

We apply the approach developed in Section 3 to balanced panel data for 23 major Japanese airports

from 2017 to 2019. The selection ofmajor airports is based on the government’s definition of airport

classification. According to the definition, Japanese airports can be classified into three categories.

The first category includes 28 airports that serve international and domestic trunk routes and are

mainly administered by the central government (MLIT). The second category includes 54 airports

that are responsible for regional air traffic and are administered by local governments.18 The other

15 airports are in the third category. Our 23 sample airports are part of the first category. We

exclude five airports in the first category because of their operational entity (local governments) and

small size compared to the others. Although the sample construction is based on the government’s

definition of major airports, these airports account for a large portion of Japanese aviation and

are representative airports. In 2017, Japanese airports received 312.6 million passengers and 2.16

million aircraft movements. The sample accounts for 90% for passengers (282.7 million) and 86%

for aircraft movements (1.85 million).

The input and output variables for airport production activity are specified for efficiency mea-

surement. On the output side, we consider two variables: the number of air passenger movements

(�%") and the volume of cargo handled (��'�$). Air passenger movements include both do-

mestic and international. Regarding input, we consider two variables: airport surface area (!�#�)

and runway length ('*#,�. ). An airport’s surface area represents its general size. The length

of the runway influences the ability to accept large and long-flight aircraft, which can carry more

passengers and cargo and affect the airport’s production function (the frontier of PPS). In general,

production activity uses capital and labor as inputs. The absence of labor-related variables for

our analysis is due to data availability. Some literature on benchmarking Japanese airports uses

the number of employees in terminal buildings as the labor input. (Yoshida and Fujimoto, 2004;

Liu et al., 2021). In Japan, terminal buildings are operated by the private sector, and the labor
18Historically, the second category includes airports built partially for political reasons and deemed inefficient

airports (Yoshida and Fujimoto, 2004).
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variable includes those who perform airport operations and those who provide various services

such as concessions, parking, and safety. Since the services provided differ between airports, the

meaning of the labor variable can vary from airport to airport. Rather than using the number of

employees in terminal buildings, Yoshida (2004) assumes the perfect complementarity between

labor and capital. We follow this approach as it enables unbiased efficiency measurement even

when omitting the labor variables. The undesirable output is the negative externality measure of

"�# in Eq. (5) and !�% in Eq. (6).

Our specification of inputs and desirable outputs is a typical selection for airport benchmarking

literature; we do not include any input variables to reduce undesirable outputs. When undesirable

outputs are incorporated into DEA, some previous studies consider inputs that affect the production

frontier for undesirable outputs. For example, Fan et al. (2014) include the number of flight

delays as an undesirable output and the number of baggage claims as an input in their DEA model

because the more baggage claims an airport has, the less congestion and delays it experiences.

Conversely, our study calculates the negative externality measures based on the aircraft’s emission

performance. Emission performance varies among aircraft sizes and models in the same category.

A large externality due to the fact that only disadvantaged-sized aircraft can enter the airport should

not be reflected as inefficiency and should be reflected in the airport production function. Therefore,

we must include input variables that capture an airport’s accommodation ability.19 Such an airport

ability is reflected in production technology by including the runway length as input. Therefore,

our DEA model has no input factor specific to reducing undesirable outputs.

For the second-stage of the Tobit analysis, we consider two independent variables: variables to

investigate aircraft allocation and potential efficiency drivers. For the first type, we consider two

variables. (�� is a dummy variable representing whether the airport is an offshore airport. Japan

has five offshore airports: Nagasaki Airport (NGS), Kansai International Airport (KIX), Kobe

Airport (UKB), Kitakyusyu Airport (KKJ), and Tyubu International Airport (NGO). All but Kobe

Airport (UKB) are included in our 23 sample airports. $%�$*' represents the operating hours
19An airport that can accommodate advantaged-sized aircraft but have disadvantaged-size aircraft is surely evaluated

as inefficient.
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of an airport and is converted into the rate by dividing 24. We expect that (�� has a negative

impact and that $%�$*' positively impacts environmental efficiency if aircraft allocation in the

Japanese airport system is not distorted.

The other type of explanatory variable is the potential efficiency driver. The extant literature

has examined the role of airport size and aircraft size as efficiency drivers (Graham, 2005). We use

the number of aircraft movements (�)") to represent airport size. Airports vary widely in size,

and the effect of a unit increase in size on efficiency values is likely to differ for small and large

airports; therefore, this variable is incorporated into Tobit regression in a logarithmic form. The

average aircraft size used at an airport (�!��)) is measured as follows. First, we aggregate the

maximum takeoff weight of all flights at an airport ()$)�!_")$,)20. Second, the average size

is calculated as �!��) = )$)�!_")$,/�)" . We consider several variables that describe

the managerial environment of airport operations and whose effect on efficiency has been studied in

the airport benchmarking literature. Themanagerial environment influences an airport’s production

decision and operating hours, which can correlate between the operating hours and the variables

of the managerial environment; therefore, we should control these managerial variables to identify

the coefficient of an airport’s operating hours. We include the percentage of international flights

(�(��'�), a dummy variable that represents whether the airport is administered by a company

rather than the central government (�$"%�#. ), and a dummy variable representing the presence

of a competitive high-speed rail station within a 40 km radius of an airport (�(').21 22

Our efficiency measurement data are constructed from several sources. The input and desirable

output variables are drawn from Airport Terminal Building Handbook23 published by All Japan
20)$)�!_")$,: =

∑
8 ")$,8: , where ")$,8: represent the maximum takeoff weight of flight 8 in airport

: .
21The effects of market structures on technical efficiencies, such as the percentage of international flights or the

competition among airports, are explored in the literature (Scotti et al., 2012; Ha et al., 2013; Chow and Fung, 2009).
Several contributions focus on the effect of airport governance structure on airport efficiency (Vogel, 2006; Oum et al.,
2006, 2013). Recently, the possible impact of HSR on airport efficiency has been investigated by Ha et al. (2013) and
Liu et al. (2021).

22We constructed the �(' variable with a slight modification to the model from Ha et al. (2013), which constructed
a dummy variable based on whether there is a high-speed rail in the same city as the airport. With their definition,
we identify airports that seem to face competition from high-speed railways but have not been identified as under
competition, so we adopt the 40 km criterion.

23Zenkoku Kuko Taminaru Biru Yoran in Japanese.
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Airport Association and Airport Status Report24 published by MLIT, respectively. Both sources

present data annually. As Section 3.2 explained, the source of constructing negative externality

measures include the (i) Cirium database, (ii) EASA Certification Noise level data, and (iii) ICAO

Aircraft Engine Emission Databank.

5 Empirical Analysis

5.1 Descriptive analysis

Table 1: Descriptive statistics

vars n mean sd median min max
RUNWAY (km) 69 3856.61 2125.34 3000.00 2200.00 11360.00
LAND (km2) 69 366.08 374.04 198.00 99.00 1522.00
APM (thou.) 69 12414.69 18820.43 3269.49 196.64 86051.08
CARGO (thou. ton) 69 237.75 511.90 13.17 0.09 2313.75
WLU (thou.ton) 69 1479.22 2302.50 340.44 19.76 9860.48
MAN (thou. euro) 69 10630.99 15938.53 3074.14 182.62 70481.53
LAP (thou. euro) 69 8418.51 13965.71 1821.15 92.23 61463.04
TE (thou. euro) 69 19049.50 29863.83 4801.21 274.85 131944.56
SEA (dummy) 69 0.17 0.38 0.00 0.00 1.00
OPHOUR (%) 69 0.72 0.21 0.58 0.42 1.00
ATM (thou.) 69 82.56 102.93 28.57 2.28 449.24
FLEET (ton) 69 87.66 33.08 78.31 39.47 185.56
TOTAL_MTOW (thou. ton) 69 9912.37 16195.61 2236.33 127.14 70072.15
ISHARE (%) 69 0.17 0.22 0.10 0.00 0.82
COMPANY (dummy) 69 0.17 0.38 0.00 0.00 1.00
HSR (dummy) 69 0.43 0.50 0.00 0.00 1.00

We start with a descriptive analysis, focusing on two negative externalities. Table 1 presents the

summary statistics. Fig 2 depicts the airport size and the amount of negative externality produced

at airports on a logarithmic scale for 2017. The points have different shapes based on the airports’

characteristics. A circle (square) point represents an offshore (land) airport, and a filled black

(unfilled white) point represents an airport with longer (shorter) operating hours than the median.
24Kuko Kanri Jokyo Chosyo in Japanese.
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Since the calculation of !�% and "�# depends on the number of aircraft movements, we observe

a relationship where negative externality increases as airports size increases.
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Figure 2: "�# and !�% for 23 Japanese airports in 2017

We analyze two types of average costs in Fig. 3 and 4. Fig. 3 plots the average costs per

aircraft movement. The average cost is calculated by dividing the amount of externality ("�#

and !�%) by the number of aircraft movements (�)"). When focusing on airport characteristics,

the average cost is relatively high for offshore airports (circle points) compared with land airports

(square points). Moreover, airports with longer operating hours (filled points) use aircraft with

high average costs. We cannot immediately interpret the results as indicating these airports have

inefficient aircraft. Most airports with longer operating hours are large and likely to operate

larger aircraft; therefore, the relationship may be caused by aircraft size. That is, larger aircraft

produce more negative externality for a single flight. Lastly, Fig. 4 depicts the average aircraft

size and the average cost per MTOW, calculated by dividing the amount of negative externality by

)$�!_")$, . The figure shows that large aircraft have an advantage regarding noise emissions

but a disadvantage regarding local air pollutants.

The second-stage regression analysis in Scotti et al. (2014) and Voltes-Dorta and Martín (2016)

shows that aircraft size positively impacts airport efficiency, measured with noise emission. The
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Figure 3: Average costs per aircraft movements

former also shows a negative impact of aircraft size on airport efficiency, measured with local

air pollutants as undesirable outputs. Our findings on the advantages and disadvantages of large

aircraft size concerning noise and local air pollutants, respectively, are consistent with their result,

as shown in Fig 4.25

5.2 Efficiency measurement

We estimate airport efficiency under five cases of DEA models for comparison. Each case has

different specifications of output variables, and all cases have the same input variables. Case 1 is

our baseline specification with two inputs, !�#� and '*#,�. , two desirable outputs, �%" and

��'�$, and two undesirable outputs, "�# and !�%. Cases 2 and 3 have only "�# and !�%,

respectively, as undesirable output; otherwise, they are the same as Case 1. Case 4 uses integrated

output variables: work-load unit (,!* = 0.1 × �%" + ��'�$) as a desirable output and total

environmental effect ()� = "�# + !�%) as an undesirable output. Case 5 has no undesirable
25Scotti et al. (2014) also employ certification-based measures of negative externalities. The measures are slightly

different from Grampella et al. (2017) and are not monetized value. Voltes-Dorta and Martín (2016) use the area of 55
Lden contour as their noise measure. Since the measures employed in the two studies are not monetized value, they do
not perform a unit cost analysis.
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Figure 4: Average costs per maximum takeoff weights

outputs and has the same desirable outputs as Case 1. In Cases 1–4, we use the DDF to measure

efficiency, while Case 5 is an ordinal output-oriented efficiency measure.

Table 2 presents the estimated efficiency with rankings and airport characteristics. The rankings

vary depending on whether the two negative externalities are considered. When aircraft allocation

is appropriate and offshore airports have relatively inefficient aircraft, offshore airports should have

lower rankings in environmental efficiency than in technical efficiency. ChubuCentrair International

Airport (NGO) and Nagasaki Airport (NGS) ranked 9th and 13th, respectively, in no undesirable

output (Case 5); they were ranked 21st and 22nd, respectively, in our baseline case (Case 1). Some

counter-intuitive results were observed in the ranking fluctuations. Itami Airport (ITM) is located

in an urban area and has been a pioneer in reducing noise, including introducing low-noise aircraft;

however, it ranked 5th in Case 5, lower in all cases that consider negative externalities (e.g., 19th

for Case 1).26 Since various airport characteristics influence efficiency, the ranking analysis is not

sufficient and confusing. We rely on the Tobit regression analysis for precise analysis.
26Itami Airport (ITM) is similar in size to Fukuoka Airport (FUK) and ranked first among all models. Fukuoka

Airport (FUK) belongs to the reference set for calculating Itami’s efficiencies, making the inefficiency score of Itaimi
larger and may cause the seemingly counter-intuitive result.
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Table 2: Efficiency value of 23 Japanese airports for 2017 with their ranking

CODE SEA OPHOUR Case 1 Case 2 Case 3 Case 4 Case 5
1 FUK 0 1.00 0.000 (1) 0.000 (1) 0.000 (20) 0.000 (1) 1.000 (3)
2 KIX 1 1.00 0.000 (1) 0.006 (5) 0.000 (21) 0.000 (1) 1.865 (6)
3 KĲ 0 0.58 0.000 (1) 0.147 (22) 0.059 (3) 0.126 (22) 13.22 (21)
4 KOJ 0 0.58 0.000 (1) 0.071 (14) 0.000 (15) 0.061 (14) 2.246 (8)
5 MYJ 0 0.58 0.000 (1) 0.000 (1) 0.032 (11) 0.037 (8) 3.002 (10)
6 KMI 0 0.58 0.000 (1) 0.116 (20) 0.000 (9) 0.090 (18) 3.745 (12)
7 WKJ 0 0.42 0.000 (1) 0.123 (21) 0.037 (1) 0.099 (20) 33.83 (23)
8 KCZ 0 0.58 0.000 (1) 0.064 (13) 0.000 (4) 0.043 (10) 6.433 (19)
9 KKJ 1 1.00 0.000 (1) 0.013 (6) 0.000 (5) 0.008 (5) 6.530 (20)
10 NRT 0 1.00 0.000 (10) 0.000 (1) 0.000 (22) 0.000 (1) 1.000 (1)
11 OKA 0 1.00 0.000 (11) 0.000 (1) 0.000 (18) 0.000 (1) 1.000 (1)
12 HND 0 1.00 0.000 (12) 0.020 (9) 0.080 (23) 0.049 (11) 1.114 (4)
13 OIT 0 0.58 0.013 (13) 0.089 (18) 0.013 (6) 0.066 (16) 5.221 (16)
14 KMJ 0 0.58 0.013 (14) 0.050 (12) 0.023 (13) 0.052 (12) 3.047 (11)
15 CTS 0 1.00 0.016 (15) 0.017 (7) 0.023 (19) 0.035 (6) 2.115 (7)
16 TAK 0 0.62 0.016 (16) 0.020 (8) 0.060 (8) 0.043 (9) 5.241 (17)
17 HĲ 0 0.58 0.017 (17) 0.021 (10) 0.048 (10) 0.035 (7) 4.517 (14)
18 SDJ 0 0.58 0.021 (18) 0.079 (16) 0.027 (12) 0.073 (17) 4.721 (15)
19 ITM 0 0.58 0.037 (19) 0.042 (11) 0.041 (17) 0.058 (13) 1.351 (5)
20 KUH 0 0.54 0.047 (20) 0.155 (23) 0.080 (2) 0.128 (23) 14.56 (22)
21 NGO 1 1.00 0.054 (21) 0.076 (15) 0.054 (16) 0.065 (15) 2.445 (9)
22 NGS 1 0.62 0.071 (22) 0.101 (19) 0.081 (14) 0.103 (21) 4.301 (13)
23 HKD 0 0.54 0.080 (23) 0.088 (17) 0.107 (7) 0.096 (19) 6.246 (18)

5.3 Tobit analysis

The result of the Tobit regression analysis is presented in Table 3. Since both the environmental

efficiency of Cases 1–4 and the technical efficiency of Case 5 are inefficiency scores, the independent

variables whose coefficients are positively estimated negatively impact airport efficiency. We

estimate Tobit models with and without potential efficiency drivers for all five efficiency cases;

therefore, Table 3 has ten regression results.

Regarding environmental efficiencies as a dependent variable (Models 1–8), almost all models

represent similar results for (�� and $%�$*' variables. Models 1 and 2 are our baseline since

they employ the environmental efficiency measured with the two negative externalities "�# and

!�%. The coefficient of (�� is estimated to be 0.02 at the 5% significance level in Model 1,
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suggesting that the aircraft at offshore airports are less environmentally efficient (i.e., noisy and

high-emission) than those at land airports. Moreover, the coefficient of $%�$*' is estimated

to be −0.04 at the 5% significance level; airports with longer operating hours can attract more

environmentally efficient aircraft than those with shorter operating hours. Model 2 shows that these

results remain unchanged even after controlling for average aircraft size operating in an airport. We

determined that airports with longer operating hours have a high unit cost per aircraft movement,

seemingly interpretable as a distortion of aircraft allocation in Fig 3; however, the regression result

reveals that themore environmentally efficient aircraft are allocated to airports with longer operating

hours when controlling the aircraft size. The result of higher costs at airports with longer operating

hours is because of the airports’ large aircraft size. These findings indicate that aircraft allocation

in the Japanese airport system is not distorted from the viewpoint of negative externalities.

Concerning the control variables, only the average aircraft size (�!��)) have statistically

significant impacts on environmental efficiency. Similar results to previous studies are observed for

the impact of average aircraft size. When only noise is incorporated in efficiency measurement, the

average aircraft size positively impacts environmental efficiency from Model 4. When only local

air pollutant is incorporated, the average aircraft size negatively affects the efficiency indicated

in Model 6. This result is in line with the regression result of Scotti et al. (2014) and the (dis)

advantage of larger aircraft for noise (local air pollutants) emission observed in Fig 4. Since Scotti

et al. (2014) employ a certification-based measure of negative externality, these results may be a

feature of the measure.

The regression results using technical efficiency differ from the environmental efficiency results.

The (�� and $%�$*' have no impact on the technical efficiency. Only airport size represented

by �)" has a statistically significant positive impact on efficiency.27 The positive impact on

airport size has been found in many airport benchmark ranking literature (Oum and Yu, 2004;

Barros and Dieke, 2007; Barros, 2008; Tsekeris, 2011) Our results confirm these findings using
27The positive impact of $%�$*' in Model 9 is due to the lack of �)"; an airport with longer operating hours

has an opportunity to increase �)" . The two variables have a positive correlation in our data. The positive impact of
�)" in Model 10 emerges as the positive impact of $%�$*' in Model 9.

27



Japanese airport data.
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Table 3: Tobit Regression

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10
(Intercept) 0.03∗ −0.05 0.18∗∗∗ 0.13∗∗ 0.08∗∗∗ −0.01 0.16∗∗∗ 0.07∗ 21.36∗∗∗ 63.97∗∗∗

(0.01) (0.04) (0.02) (0.04) (0.02) (0.05) (0.01) (0.03) (2.96) (6.46)
OPHOUR −0.04∗ −0.10∗∗ −0.19∗∗∗ −0.13∗∗ −0.09∗∗ −0.17∗∗∗ −0.15∗∗∗ −0.15∗∗∗ −23.91∗∗∗ 5.27

(0.02) (0.04) (0.02) (0.04) (0.03) (0.05) (0.02) (0.03) (4.30) (6.18)
SEA 0.02∗ 0.04∗∗∗ 0.05∗∗∗ 0.04∗∗ 0.02 0.06∗∗∗ 0.03∗∗ 0.04∗∗∗ 4.01 −3.00

(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (2.24) (2.04)
FLEET 0.00∗ −0.00∗∗∗ 0.00∗∗∗ −0.00 0.01

(0.00) (0.00) (0.00) (0.00) (0.03)
log(ATM) 0.01 0.01 0.01 0.01∗ −6.01∗∗∗

(0.01) (0.01) (0.01) (0.00) (0.90)
ISHARE −0.05 0.01 −0.08 −0.04 −0.40

(0.03) (0.04) (0.04) (0.03) (5.60)
HSR 0.00 −0.01 0.01 −0.00 −0.24

(0.01) (0.01) (0.01) (0.01) (1.19)
COMPANY 0.00 −0.02 −0.02 −0.02 5.08∗

(0.01) (0.02) (0.02) (0.01) (2.57)
Efficiency Case 1 Case 1 Case 2 Case 2 Case 3 Case 3 Case 4 Case 4 Case 5 Case 5
log(f) −3.62∗∗∗ −3.71∗∗∗ −3.39∗∗∗ −3.53∗∗∗ −3.23∗∗∗ −3.44∗∗∗ −3.68∗∗∗ −3.78∗∗∗ 1.82∗∗∗ 1.49∗∗∗

(0.12) (0.12) (0.09) (0.09) (0.11) (0.11) (0.09) (0.09) (0.09) (0.09)
Log Likelihood 75.72 82.02 109.23 117.39 67.22 78.13 128.24 135.96 −204.10 −183.92
Sample Size 69 69 69 69 69 69 69 69 69 69
∗∗∗? < 0.001; ∗∗? < 0.01; ∗? < 0.05
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6 Conclusion

This study evaluates aircraft allocation in the Japanese aviation system from the perspective of

negative externalities. Specifically, we examine whether the environmental regulations imposed by

each airport negatively impact airports with no or weak restrictions, i.e., airlines engage in distorted

aircraft allocation. We propose using environmental efficiency estimated with a certification-based

measure of negative externalities and second-stage analysis for this purpose.

Our main results are as follows. The second-stage Tobit regression shows that offshore airports

have lower environmental efficiency values, and airports with longer operating hours have higher

efficiency values. Therefore, we find that the allocation of airports in the Japanese aviation system

is not distorted from the perspective of a negative externality; we do not observe a distorted shift.

Furthermore, we find characteristics of a certification-based measure of negative externalities and

could explain the relationship between the characteristics and the regression results. We find the

advantage of larger aircraft size on noise emissions, reflected in the positive effect of average aircraft

size on environmental efficiency measured with noise. Similar effects are observed in the opposite

direction for local air pollutants.

Our proposed method and its result have a direct policy implication. Even if an airport succeeds

in reducing negative externalities, the reduction efforts may negatively impact other airports and

induce a distorted aircraft allocation. Negative externalities at an airport and the airport’s efforts

to reduce them should not be evaluated separately but concerning other airports. Our proposed

regression method allows the evaluation of aircraft allocation in a national airport system rather

than in a single airport, suggesting that the efforts of individual airports and governments to improve

environmental performance can be justified from a national perspective.

Finally, this study has three limitations. First, the regression method has only screening

capability. If environmental regulations cause a large distortion of aircraft allocation, the regression

coefficient can have an unintended sign; however, a small distortion leaves the sign of the coefficient

unchanged. A method that can detect small distortions should be developed. The second limitation

relates to the scope of the airport system. An aircraft not meeting the environmental standard
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may be sold in a second-hand market and used overseas. Since we analyze a national airport

system using airport data from a single country, our proposed method cannot detect cross-country

displacement. If such displacement is the subject of research, the scope of the airport system should

be expanded. Finally, our measure of negative eternality and environmental efficiency only reflects

the efforts of airports to encourage airlines to use environmentally friendly aircraft. In 2001, ICAO

adopted a policy called the “Balanced Approach” to airport noise management, which comprises

four elements to reduce noise exposure: (i) reduction of noise at source, (ii) land use planning and

management, (iii) noise abatement operational procedures, and (iv) operating restrictions. However,

this study only assessed airports’ efforts regarding the first and fourth elements; therefore, future

efficiency studies can implement measures that reflect various airport environmental efforts and

regulations.
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